過拋物線x2=4y上不同兩點(diǎn)A、B分別作拋物線的切線相交于P點(diǎn),(1)求點(diǎn)P的軌跡方程;
(2)已知點(diǎn)F(0,1),是否存在實(shí)數(shù)λ使得?若存在,求出λ的值,若不存在,請說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:江蘇省丹陽高級中學(xué)2007年高三數(shù)學(xué)月考試卷及答案 題型:044
過拋物線x2=4y上不同兩點(diǎn)A、B分別作拋物線的切線相交于P點(diǎn),(1)求點(diǎn)P的軌跡方程;(2)已知點(diǎn)F(0,1),是否存在實(shí)數(shù)λ使得?若存在,求出λ的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:增城市2007屆華僑中學(xué)高三四月份月考試題\數(shù)學(xué)(理科) 題型:044
已知過拋物線x2=4y的對稱軸上一點(diǎn)P(0,m)(m>0)作直線l,l與拋物線交于A、B兩點(diǎn).
(1)若角∠AOB為銳角(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)m的取值范圍;
(2)若l的方程為x-2y+12=0,且過A、B兩點(diǎn)的圓C與拋物線在點(diǎn)且(A在第一象限)處有共同的切線,求圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:101網(wǎng)校同步練習(xí) 高二數(shù)學(xué) 蘇教版(新課標(biāo)·2004年初審) 蘇教版 題型:044
如圖,對每個(gè)正整數(shù)n,An(xn,yn)是拋物線x2=4y上的點(diǎn),過焦點(diǎn)F的直線FAn交拋物線于另一點(diǎn)Bn(Sn,tn).Cn為拋物線上分別以An與Bn為切點(diǎn)的兩條切線的交點(diǎn).
(1)求證∠AnCnBn=90o;
(2)求證點(diǎn)Cn的縱坐標(biāo)是一個(gè)定值,并求這個(gè)定值;
(3)若|FC1|、|FC2|、|FC3|、…、|FCn|構(gòu)成首項(xiàng)為3,公比為2的等比數(shù)列,求|A1B1|+|A2B2|+|A3B3|+…+|AnBn|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:廣州市2008屆高中教材變式題9:圓錐曲線與方程 題型:047
如圖,對每個(gè)正整數(shù)n,An(xn,yn)是拋物線x2=4y上的點(diǎn),過焦點(diǎn)F的直線FAn交拋物線于另一點(diǎn)Bn(sn,tn).
(Ⅰ)試證:xnsn=-4(n≥1);
(Ⅱ)取xn=2n,并記Cn為拋物線上分別以An與Bn為切點(diǎn)的兩條切線的交點(diǎn).試證:|FC1|+|FC2|+…+|FCn|=2n-2-n+1+1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com