17.已知集合M={x|$\frac{x}{x-1}$≥0,x∈R},N={y|y=3x2+1,x∈R},則M∩N為( 。
A.{x|x>1}B.{x|x≥1}C.{x>1或x≤0}D.{x|0≤x≤1}

分析 求出集合M,N,然后求解交集即可.

解答 解:集合M={x|$\frac{x}{x-1}$≥0,x∈R}={x|x>1或 x≤0},N={y|y=3x2+1,x∈R}={y|y≥1},
M∩N={x|x>1}.
故選:A.

點(diǎn)評(píng) 本題考查交集的求法,不等式的解法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=2,an+1=2Sn+1,則數(shù)列{an}的通項(xiàng)公式為${a_n}=\left\{\begin{array}{l}2,n=1\\ 5•{3^{n-2}},n≥2\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知矩陣A=$(\begin{array}{l}{1}&{2}&{-1}\\{2}&{2}&{-3}\end{array})$,矩陣B=$(\begin{array}{l}{a}\\{-2a}\\{3a}\end{array})$.若AB=$(\begin{array}{c}12\\ 22\end{array}\right.)$,則a=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.矩陣M=$(\begin{array}{l}{tanα}&{si{n}^{2}α}\\{co{s}^{2}α}&{cotα}\end{array})$,則a11•a22-a12-a21=1-$\frac{1}{4}si{n}^{2}2α$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在△ABC中,如果(a+b+c)(b+c-a)=3bc,那么角A=( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知向量$\overrightarrow{m}$=(a,-2),$\overrightarrow{n}$=(1,1-a),且$\overrightarrow{m}$∥$\overrightarrow{n}$,則實(shí)數(shù)a的值為( 。
A.2或-1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在△ABC中,角A,B,C的對(duì)邊是a,b,c,已知2b-c=2acosC.
(Ⅰ)求A;
(Ⅱ)若4(b+c)=3bc,a=2$\sqrt{3}$,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=x3+sinx,x∈(-1,1),則滿足f(a2-1)+f(a-1)>0的a的取值范圍是( 。
A.(0,2)B.(1,$\sqrt{2}$)C.(1,2)D.(0,$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若直線過點(diǎn)($\sqrt{3}$,-3)且傾斜角為30°,則該直線的方程為y=$\frac{{\sqrt{3}}}{3}$x-4.

查看答案和解析>>

同步練習(xí)冊(cè)答案