【題目】某廠生產(chǎn)某產(chǎn)品的年固定成本為250萬(wàn)元,每生產(chǎn)千件,需另投入成本(萬(wàn)元),若年產(chǎn)量不足千件, 的圖像是如圖的拋物線,此時(shí)的解集為,且的最小值是,若年產(chǎn)量不小于千件, ,每千件商品售價(jià)為50萬(wàn)元,通過(guò)市場(chǎng)分析,該廠生產(chǎn)的商品能全部售完;

(1)寫出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;

(2)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤(rùn)最大?

【答案】(1) (2) 當(dāng)年產(chǎn)量千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤(rùn)最大,為萬(wàn)元.

【解析】試題分析:(1)由題可知,利潤(rùn)=售價(jià)-成本,分別對(duì)年產(chǎn)量不足件,以及年產(chǎn)量不小于件計(jì)算,代入不同區(qū)間的解析式,化簡(jiǎn)求得;

2)分別計(jì)算年產(chǎn)量不足件,以及年產(chǎn)量不小于件的利潤(rùn),當(dāng)年產(chǎn)量不足80件時(shí),由配方法解得利潤(rùn)的最大值為950萬(wàn)元,當(dāng)年產(chǎn)量不小于件時(shí),由均值不等式解得利潤(rùn)最大值為1000萬(wàn)元,故年產(chǎn)量為件時(shí),利潤(rùn)最大為萬(wàn)元;

試題解析:(1)當(dāng)時(shí), ;

當(dāng)時(shí), ,

所以).

2)當(dāng)時(shí),

此時(shí),當(dāng)時(shí), 取得最大值萬(wàn)元.

當(dāng)時(shí),

此時(shí),當(dāng)時(shí),即時(shí), 取得最大值萬(wàn)元,

所以年產(chǎn)量為件時(shí),利潤(rùn)最大為萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】排列組合
(1)7位同學(xué)站成一排,甲、乙兩同學(xué)必須相鄰的排法共有多少種?
(2)7位同學(xué)站成一排,甲、乙和丙三個(gè)同學(xué)都不能相鄰的排法共有多少種?
(3)7位同學(xué)站成一排,甲不站排頭,乙不站排尾,不同站法種數(shù)有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們稱滿足: )的數(shù)列為“級(jí)夢(mèng)數(shù)列”.

(1)若是“級(jí)夢(mèng)數(shù)列”且.求: 的值;

(2)若是“級(jí)夢(mèng)數(shù)列”且滿足, ,求的最小值;

(3)若是“0級(jí)夢(mèng)數(shù)列”且,設(shè)數(shù)列的前項(xiàng)和為.證明: ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一塊半圓形空地,開(kāi)發(fā)商計(jì)劃建一個(gè)矩形游泳池及其矩形附屬設(shè)施,并將剩余空地進(jìn)行綠化,園林局要求綠化面積應(yīng)最大化.其中半圓的圓心為,半徑為,矩形的一邊在直徑上,點(diǎn)、、在圓周上,、在邊上,且,設(shè)

(1)記游泳池及其附屬設(shè)施的占地面積為,求的表達(dá)式;

(2)怎樣設(shè)計(jì)才能符合園林局的要求?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|1<x<3},集合B={x|2m<x<1﹣m}.
(1)若m=﹣1求A∩B;
(2)若A∩B=,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>,其中為常數(shù);

(1)若,且是奇函數(shù),求的值;

(2)若, ,函數(shù)的最小值是,求的最大值;

(3)若,在上存在個(gè)點(diǎn) ,滿足, ,

,使得,

求實(shí)數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率為,以橢圓長(zhǎng)、短軸四個(gè)端點(diǎn)為頂點(diǎn)為四邊形的面積為.

(Ⅰ)求橢圓的方程;

(Ⅱ)如圖所示,記橢圓的左、右頂點(diǎn)分別為、,當(dāng)動(dòng)點(diǎn)在定直線上運(yùn)動(dòng)時(shí),直線分別交橢圓于兩點(diǎn)、,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的極小值為0.

(1)求實(shí)數(shù)的值;

(2)若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),關(guān)于的不等式只有1個(gè)整數(shù)解,則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案