18.已知雙曲線的方程為$\frac{x^2}{9}-\frac{y^2}{16}=1$,則此雙曲線的實軸長為6.

分析 雙曲線方程$\frac{x^2}{9}-\frac{y^2}{16}=1$中,由a2=9,求出a,即可能求出雙曲線的實軸長.

解答 解:雙曲線方程$\frac{x^2}{9}-\frac{y^2}{16}=1$中,
∵a2=9,∴a=3
∴雙曲線的實軸長2a=2×3=6.
故答案為6.

點評 本題考查雙曲線的實軸長的求法,是基礎(chǔ)題.解題時要認(rèn)真審題,仔細(xì)解答.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知雙曲線${C_1}:\frac{x^2}{4}-{y^2}=1$,雙曲線${C_2}:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>b>0)$的左、右焦點分別為F1,F(xiàn)2,M是雙曲線C2的一條漸近線上的點,且OM⊥MF2,O為坐標(biāo)原點,若${S_{△OM{F_2}}}=16$,且雙曲線C1,C2的離心率相同,則雙曲線C2的實軸長是( 。
A.32B.16C.8D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,已知正六棱柱的最大對角面的面積為4m2,互相平行的兩個側(cè)面的距離為 2m,則這個六棱柱的體積為( 。
A.3m3B.6m3C.12m3D.15m3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.定義在區(qū)間(0,+∞)上的函數(shù)f(x)使不等式xf'(x)<4f(x)恒成立,其中f'(x)為f(x)的導(dǎo)數(shù),則( 。
A.$\frac{f(2)}{f(1)}<16$B.$\frac{f(2)}{f(1)}<8$C.$\frac{f(2)}{f(1)}<4$D.$\frac{f(2)}{f(1)}<2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.取一根長度為4m的繩子,拉直后在任意位置剪斷,則剪得的兩段長度都不小于1.5m的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知定義域為R的奇函數(shù)y=f(x)的圖象關(guān)于直線x=1對稱,f(1)=2,則f(3)+f(4)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.集合M={x|lg(1-x)<1},N={x|-1≤x≤1},則M∩N=( 。
A.(-9,1)B.(-9,1]C.[-1,1]D.[-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某校高二(1)班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,且將全班25人的成績記為Ai(i=1,2,..,25),由右邊的程序運行后,輸出n=10.據(jù)此解答如下問題:

(1)求莖葉圖中破損處分?jǐn)?shù)在[50,60),[70,80),[80,90)各區(qū)間段的頻數(shù);
(2)利用頻率分布直方圖估計該班的數(shù)學(xué)測試成績的眾數(shù),中位數(shù),平均數(shù)分別是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.過點P(-1,2)且垂直于直線2x-3y+9=0的直線方程是( 。
A.3x+2y-1=0B.3x+2y+7=0C.2x-3y+5=0D.2x-3y+8=0

查看答案和解析>>

同步練習(xí)冊答案