已知曲線的方程為:,為常數(shù)).
(1)判斷曲線的形狀;
(2)設(shè)曲線分別與軸、軸交于點(diǎn)、、不同于原點(diǎn)),試判斷的面積是否為定值?并證明你的判斷;
(3)設(shè)直線與曲線交于不同的兩點(diǎn)、,且,求曲線的方程.
(1)圓;(2)詳見解析;(3).

試題分析:(1)在曲線的方程兩邊同時(shí)除以,并進(jìn)行配方得到,從而得到曲線的具體形狀;(2)在曲線的方程中分別令求出點(diǎn)的坐標(biāo),再驗(yàn)證的面積是否為定值;(3)根據(jù)條件得到圓心在線段的垂直平分線上,并且得到圓心與原點(diǎn)的連線與直線垂直,利用兩條直線斜率乘積為,求出值,并利用直線與圓相交作為檢驗(yàn)條件,從而確定曲線的方程.
試題解析:(1)將曲線的方程化為
可知曲線是以點(diǎn)為圓心,以為半徑的圓;
(2)的面積為定值.
證明如下:
在曲線的方程中令,得點(diǎn)
在曲線方程中令,得點(diǎn)
(定值);
(3)過(guò)坐標(biāo)原點(diǎn),且,
圓心的垂直平分線上,,,
當(dāng)時(shí),圓心坐標(biāo)為,圓的半徑為,
圓心到直線的距離,
直線與圓相離,不合題意舍去,
,這時(shí)曲線的方程為.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知半徑為5的圓的圓心在軸上,圓心的橫坐標(biāo)是整數(shù),且與直線相切.
求:(1)求圓的方程;
(2)設(shè)直線與圓相交于兩點(diǎn),求實(shí)數(shù)的取值范圍;
(3)在(2)的條件下,是否存在實(shí)數(shù),使得過(guò)點(diǎn)的直線垂直平分弦
若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知圓,則兩圓的外公切線段長(zhǎng)等于          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,為圓上一點(diǎn),過(guò)點(diǎn)的切線交的延長(zhǎng)線于點(diǎn),,
,則            ;圓的直徑為          

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖所示,直線PB與圓O相切于點(diǎn)B,D是弦AC上的點(diǎn),,若,則AB=        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若圓C:關(guān)于直線對(duì)稱,則由點(diǎn)向圓所作的切線長(zhǎng)的最小值是(  )
A.2B. 4C.3D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

上的點(diǎn)到直線的距離最大值是(   )
A.2B.1+C.D.1+

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù),若,且,則的取值范圍為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知圓心(a,b)(a<0,b<0)在直線y=2x+1上的圓,其圓心到x軸的距離恰好等于圓的半徑,在y軸上截得的弦長(zhǎng)為2,則圓的方程為(  )
A.(x+2)2+(y+3)2=9 B.(x+3)2+(y+5)2=25
C.(x+6)22D.22

查看答案和解析>>

同步練習(xí)冊(cè)答案