【題目】已知為實數(shù),.

(1)若,求上的最大值和最小值;

(2)若上都遞減,求的取值范圍.

【答案】(1)最大值為22,最小值;(2)

【解析】

試題分析:(1)首先求出導(dǎo)函數(shù),然后根據(jù)導(dǎo)函數(shù)與0的關(guān)系求出函數(shù)的單調(diào)區(qū)間,由此求得最大值與最小值;(2)根據(jù)函數(shù)的單調(diào)性與導(dǎo)函數(shù)的關(guān)系,結(jié)合判別式建立不等式組求解即可.

試題解析:f(x)=-3x26ax+2a+7.

1f(-1)=-4a+4=0,所以a=1. 2

f(x)=-3x26x+9=-3(x-3)(x+1),

當(dāng)2x<-1時,f(x)<0,f(x)單調(diào)遞減;

當(dāng)-1<x2時,f(x)>0,f(x)單調(diào)遞增,

f(-2)=2,f(-1)=-5,f(2)=22

f(x)在[2,2]上的最大值為22,最小值為-5 6

(2)由題意得x(-,2][3,)時,f(x)0成立, 7

f(x)=0可知,判別式>0,所以解得:-a1.

所以a的取值范圍[,1] 12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

)證明:;

)證明:當(dāng)時,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的方程22x+2xa+a+1=0有實根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求的最大值;

(2)當(dāng)時,函數(shù)有最小值. 的最小值為,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為線段上一點,的中點.

(1)證明:平面

(2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為、,離心率,點在橢圓上.

(1)求橢圓的方程;

(2)設(shè)過點且不與坐標(biāo)軸垂直的直線交橢圓、兩點,線段的垂直平分線與軸交于點,求點的橫坐標(biāo)的取值范圍;

(3)在第(2)問的條件下,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市統(tǒng)計局就2015年畢業(yè)大學(xué)生的月收入情況調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖所示,每個分組包括左端點,不包括右端點,如第一組表示.

(1)求畢業(yè)大學(xué)生月收入在的頻率;

(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);

(3)為了分析大學(xué)生的收入與所學(xué)專業(yè)、性別等方面的關(guān)系,必須按月收入再從這10000人中按分層抽樣方法抽出100人作進一步分析,則月收入在的這段應(yīng)抽取多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,圓,動圓與圓外切并與圓內(nèi)切,圓心的軌跡為曲線.

(1)求曲線的方程;

(2)若雙曲線的右焦點即為曲線的右頂點,直線的一條漸近線.

.求雙曲線C的方程;

.過點的直線,交雙曲線兩點,交軸于點(點與的頂點不重合),當(dāng),且時,求點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)教師對所任教的兩個班級各抽取20名學(xué)生進行測試,分?jǐn)?shù)分布如表:

(1)若成績120分以上(含120分)為優(yōu)秀,求從乙班參加測試的90分以上(含90分)的同學(xué)中,隨機任取2名同學(xué),恰有1人為優(yōu)秀的概率;

(2)根據(jù)以上數(shù)據(jù)完成下面的列聯(lián)表:在犯錯概率小于的前提下,你是否有足夠的把握認(rèn)為學(xué)生的數(shù)學(xué)成績是否優(yōu)秀與班級有關(guān)系?

2.072

2.706

3.841

5.024

6.635

7.879

10.828

0.15

0.10

0.05

0.025

0.010

0.005

0.001

,其中.

查看答案和解析>>

同步練習(xí)冊答案