等差數(shù)列{an}的前n項和記為Sn,已知a10=17,a20=37.
(1)求通項an
(2)若sn=15,求n.
考點:等差數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:(1)由a10=a1+9d=17,a20=a1+19d=37,求出首項和公差,即得等差數(shù)列{an} 的通項公式.
(2)由Sn =15,可得15=-n+
1
2
n(n-1)•2,解方程求得項數(shù)n的值.
解答: 解:(1)a10=a1+9d=17,a20=a1+19d=37,
解得a1=-1,d=2.
∴an=a1 +(n-1)d=2n-3.…(6分)
(2)∵Sn =na1+
1
2
n(n-1)d,
∴15=-n+
1
2
n(n-1)•2,解得n=5,或n=-3(舍去),
故取n=5. …(12分)
點評:本題主要考查等差數(shù)列的通項公式、前n項和公式的應(yīng)用,求出首項和公差d的值,是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x2+(b+2)x+b+1=0},則A中所有元素的和S=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程2x=
3
2
-x2的解的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,a1=3且an+1=2Sn+3;數(shù)列{bn}為等差數(shù)列,且公差d>0,b1+b2+b3=15.
(1)求數(shù)列{an}的通項公式;
(2)若
a1
3
+b1,
a2
3
+b2
a3
3
+b3成等比數(shù)列,記數(shù)列{bn}的前n項和為Tn,求證:
1
T1
+
1
T2
+…+
1
Tn
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p≠0)及定點A(a,b),B(-a,0),ab≠0,b2≠2pa,M是拋物線上的點.設(shè)直線AM、BM與拋物線的另一個交點分別為M1、M2,當M變動時,直線M1M2恒過一個定點,此定點坐標為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
lnx
x
(x>0)的單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把:“將a,b,c三個正整數(shù)按照從大到小的順序排列”的算法步驟補充完整.
第一步,輸入3個正整數(shù)a,b,c
第二步,將a與b比較,并把小的賦給b,大者賦給a
第三步,
 

第四步,將b與c比較,并把小的賦給c,大者賦給b
第五步,按順序輸出a,b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(2x+
a
x
5的展開式中各項系數(shù)之和為1,則該展開式中含
1
x
項的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sinxcosx-
3
cos(x+π)cosx
(Ⅰ)求f(x)的最小正周期及對稱軸.
(Ⅱ)函數(shù)的單調(diào)增區(qū)間及最大值.

查看答案和解析>>

同步練習(xí)冊答案