【題目】如圖,在四棱錐中,底面,,點(diǎn)為棱的中點(diǎn),

(1)證明

(2)若點(diǎn)為棱上一點(diǎn),且,求二面角的余弦值.

【答案】(1)見(jiàn)解析;(2)

【解析】

分析:(Ⅰ)由題意可得.兩兩垂直,建立空間直角坐標(biāo)系,根據(jù)可證得Ⅱ)根據(jù)點(diǎn)在棱上可設(shè),再由,由此可得,從而可得然后可求得平面的法向量為,又平面的一個(gè)法向量,可得,然后結(jié)合圖形可得所求.

詳解:(Ⅰ)證明:底面, 平面,

,,

.兩兩垂直.

為原點(diǎn),軸,軸,軸,建立空間直角坐標(biāo)系.

則由題意得,

,

,

(Ⅱ)可得,

由點(diǎn)在棱上,

設(shè),

,

,

解得

設(shè)平面的法向量為,則

,得,

,得

由題意取平面的一個(gè)法向量

由圖形知二面角是銳角,

所以二面角的余弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩人玩一種游戲,每次由甲、乙各出1到5根手指,若和為偶數(shù)算甲贏,否則算乙贏.

(1)若以表示和為6的事件,求;

(2)現(xiàn)連玩三次,若以表示甲至少贏一次的事件,表示乙至少贏兩次的事件,試問(wèn)是否為互斥事件?為什么?

(3)這種游戲規(guī)則公平嗎?試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某險(xiǎn)種的基本保費(fèi)為(單位:元),繼續(xù)購(gòu)買(mǎi)該險(xiǎn)種的投保人稱為續(xù)保人,續(xù)保人本年度的保費(fèi)與其

上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:

上年度出險(xiǎn)次數(shù)

0

1

2

3

4

保費(fèi)

隨機(jī)調(diào)查了該險(xiǎn)種的200名續(xù)保人在一年內(nèi)的出險(xiǎn)情況,得到如下統(tǒng)計(jì)表:

出險(xiǎn)次數(shù)

0

1

2

3

4

頻數(shù)

60

50

30

30

20

10

1)記A為事件:“一續(xù)保人本年度的保費(fèi)不高于基本保費(fèi)”.的估計(jì)值;

2)記B為事件:“一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)但不高于基本保費(fèi)的160%”.的估計(jì)值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有120粒試驗(yàn)種子需要播種,現(xiàn)有兩種方案:方案一:將120粒種子分種在40個(gè)坑內(nèi),每坑3粒;方案二:120粒種子分種在60個(gè)坑內(nèi),每坑2粒 如果每粒種子發(fā)芽的概率為0.5,并且,若一個(gè)坑內(nèi)至少有1粒種子發(fā)芽,則這個(gè)坑不需要補(bǔ)種;若一個(gè)坑內(nèi)的種子都沒(méi)發(fā)芽,則這個(gè)坑需要補(bǔ)種(每個(gè)坑至多補(bǔ)種一次,且第二次補(bǔ)種的種子顆粒同第一次).假定每個(gè)坑第一次播種需要2元,補(bǔ)種1個(gè)坑需1元;每個(gè)成活的坑可收貨100粒試驗(yàn)種子,每粒試驗(yàn)種子收益1元.

(1)用表示播種費(fèi)用,分別求出兩種方案的的數(shù)學(xué)期望;

(2)用表示收益,分別求出兩種方案的收益的數(shù)學(xué)期望;

(3)如果在某塊試驗(yàn)田對(duì)該種子進(jìn)行試驗(yàn),你認(rèn)為應(yīng)該選擇哪種方案?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( )

A.因?yàn)?/span>,所以是函數(shù)的一個(gè)周期;

B.因?yàn)?/span>,所以是函數(shù)的最小正周期;

C.因?yàn)?/span>時(shí),等式成立,所以是函數(shù)的一個(gè)周期;

D.因?yàn)?/span>,所以不是函數(shù)的一個(gè)周期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)處取得極值,對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】新能源汽車(chē)的春天來(lái)了!2018年3月5日上午,李克強(qiáng)總理做政府工作報(bào)告時(shí)表示,將新能源汽車(chē)車(chē)輛購(gòu)置稅優(yōu)惠政策再延長(zhǎng)三年,自2018年1月1日至2020年12月31日,對(duì)購(gòu)置的新能源汽車(chē)免征車(chē)輛購(gòu)置稅.某人計(jì)劃于2018年5月購(gòu)買(mǎi)一輛某品牌新能源汽車(chē),他從當(dāng)?shù)卦撈放其N售網(wǎng)站了解到近五個(gè)月實(shí)際銷量如下表:

月份

2017.12

2018.01

2018.02

2018.03

2018.04

月份編號(hào)t

1

2

3

4

5

銷量(萬(wàn)輛)

0.5

0.6

1

1.4

1.7

(1)經(jīng)分析,可用線性回歸模型擬合當(dāng)?shù)卦撈放菩履茉雌?chē)實(shí)際銷量(萬(wàn)輛)與月份編號(hào)之間的相關(guān)關(guān)系.請(qǐng)用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測(cè)2018年5月份當(dāng)?shù)卦撈放菩履茉雌?chē)的銷量;

(2)2018年6月12日,中央財(cái)政和地方財(cái)政將根據(jù)新能源汽車(chē)的最大續(xù)航里程(新能源汽車(chē)的最大續(xù)航里程是指理論上新能源汽車(chē)所裝的燃料或電池所能夠提供給車(chē)跑的最遠(yuǎn)里程)對(duì)購(gòu)車(chē)補(bǔ)貼進(jìn)行新一輪調(diào)整.已知某地?cái)M購(gòu)買(mǎi)新能源汽車(chē)的消費(fèi)群體十分龐大,某調(diào)研機(jī)構(gòu)對(duì)其中的200名消費(fèi)者的購(gòu)車(chē)補(bǔ)貼金額的心理預(yù)期值進(jìn)行了一個(gè)抽樣調(diào)查,得到如下一份頻數(shù)表:

補(bǔ)貼金額預(yù)期值區(qū)間(萬(wàn)元)

20

60

60

30

20

10

將頻率視為概率,現(xiàn)用隨機(jī)抽樣方法從該地區(qū)擬購(gòu)買(mǎi)新能源汽車(chē)的所有消費(fèi)者中隨機(jī)抽取3人,記被抽取3人中對(duì)補(bǔ)貼金額的心理預(yù)期值不低于3萬(wàn)元的人數(shù)為,求的分布列及數(shù)學(xué)期望.

參考公式及數(shù)據(jù):①回歸方程,其中,②,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019420日,遼寧省人民政府公布了新高考方案,方案中“2”指的是在思想政治、地理、化學(xué)、生物4門(mén)中選擇2門(mén).“2”中記入高考總分的單科成績(jī)是由原始分轉(zhuǎn)化得到的等級(jí)分,學(xué)科高考原始分在全省的排名越靠前,等級(jí)分越高.小明同學(xué)是2018級(jí)的學(xué)生.已確定了必選地理且不選政治,為確定另選一科,小明收集并整理了生物與化學(xué)近10大聯(lián)考的成績(jī)百分比排名數(shù)據(jù)x(如的含義是指在該次考試中,成績(jī)高于小明的考生占參加該次考試的考生數(shù)的)繪制莖葉圖如下.

則由圖中數(shù)據(jù)生物學(xué)科聯(lián)考百分比排名的分位數(shù)為________.從平均數(shù)的角度來(lái)看你認(rèn)為小明更應(yīng)該選擇________.(填生物或化學(xué))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某銷售公司擬招聘一名產(chǎn)品推銷員,有如下兩種工資方案:

方案一:每月底薪2000元,每銷售一件產(chǎn)品提成15元;

方案二:每月底薪3500元,月銷售量不超過(guò)300件,沒(méi)有提成,超過(guò)300件的部分每件提成30元.

(1)分別寫(xiě)出兩種方案中推銷員的月工資(單位:元)與月銷售產(chǎn)品件數(shù)的函數(shù)關(guān)系式;

(2)從該銷售公司隨機(jī)選取一名推銷員,對(duì)他(或她)過(guò)去兩年的銷售情況進(jìn)行統(tǒng)計(jì),得到如下統(tǒng)計(jì)表:

月銷售產(chǎn)品件數(shù)

300

400

500

600

700

次數(shù)

2

4

9

5

4

把頻率視為概率,分別求兩種方案推銷員的月工資超過(guò)11090元的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案