下列函數(shù)中,在(-1,1)內(nèi)有零點(diǎn)且單調(diào)遞增的是( 。
A、y=log
1
2
x
B、y=-x3
C、y=2x-1
D、y=x2-2
考點(diǎn):函數(shù)單調(diào)性的判斷與證明,函數(shù)零點(diǎn)的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)選項(xiàng)中的函數(shù),結(jié)合題意,選出滿足題意的函數(shù)即可.
解答: 解:對于A,函數(shù)y=log
1
2
x的定義域(0,+∞)上的減函數(shù),∴不滿足題意;
對于B,函數(shù)y=-x3是定義域R上的減函數(shù),∴不滿足題意;
對于C,函數(shù)y=2x-1是定義域R上的增函數(shù),且在(-1,1)上存在零點(diǎn)x=0,∴滿足題意;
對于D,函數(shù)y=x2-2在(-∞,0)上是減函數(shù),在(0,+∞)是增函數(shù),∴不滿足題意.
故選:C.
點(diǎn)評:本題考查了判斷常見的基本初等函數(shù)的單調(diào)性問題,也考查了求函數(shù)零點(diǎn)的應(yīng)用問題,是基礎(chǔ)題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線
x2
a2
-
y2
b2
=1的離心率為
3
、則其漸近線的斜率為:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0,則下列不等式中不恒成立的是( 。
A、
ab
2ab
a+b
B、(a+b)(
1
a
+
1
b
)≥4
C、
|a-b|
a
-
b
D、a2+b2+1≥2a+2b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下有關(guān)線性回歸分析的說法不正確的是( 。
A、在回歸線方程
y
=0.4x+12中,當(dāng)自變量x每增加一個單位時,變量
y
平均增加約為0.4個單位
B、用最二乘法求回歸直線方程,是尋求使
x
n+1
(y1-bx-a)2最小的a,b的值
C、相關(guān)系數(shù)為r,若r2越接近1,則表明回歸線的效果越好
D、相關(guān)系數(shù)r越小,表明兩個變量相關(guān)性越弱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商場經(jīng)營一批進(jìn)價是每件30元的商品,在市場銷售中發(fā)現(xiàn)此商品的銷售單價x元(30≤x≤50)與日銷售量y件之間有如下關(guān)系:
銷售單價x(元)30404550
日銷售量y(件)6030150
(Ⅰ)經(jīng)對上述數(shù)據(jù)研究發(fā)現(xiàn),銷售單價x與日銷售量y滿足函數(shù)關(guān)系y=kx+b,試求k,b的值;
(Ⅱ)設(shè)經(jīng)營此商品的日銷售利潤為P元,根據(jù)(Ⅰ)關(guān)系式,寫出P關(guān)于x的函數(shù)關(guān)系式,并求出銷售單價x為多少元時,才能獲得最大日銷售利潤,最大日銷售利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,且a≠1,設(shè)命題p:0<a<1;q:方程ax2-x+
1
2
=0有兩個不等的實(shí)數(shù)根.若“p∧q”為假命題,“p∨q”為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:(x+1)(x-3)≤0,命題q:-m≤x≤1+m(m>0)
(Ⅰ)若p是q的充分條件,求實(shí)數(shù)m的取值范圍;
(Ⅱ)若m=5,“p或q”為真命題,“p且q”為假命題,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了保護(hù)環(huán)境,人們提出了“低碳生活”理念,為研究“低碳生活”對居民的生活方式的影響,對某市100為居民開展相關(guān)調(diào)查統(tǒng)計(jì),得到右邊的列表
  選擇低碳生活 不選擇低碳生活 合計(jì)
 男性 30 20 50
 女性 20 30 50
 合計(jì) 50 50 100
(Ⅰ)根據(jù)以上列聯(lián)表判斷:是否有95%的把握認(rèn)為“居民性別與是否選擇低碳生活之間存在顯著差異”?(Ⅱ)從其中的50名男性居民中按“是否選擇低碳生活”采用分層抽樣方法抽取一個容量為5的樣本,再從中隨機(jī)抽取2人作深度訪問,求抽到的2人都是“選擇低碳生活”的人的概率.
(附:
 P(K2>k) 0.1 0.05 0.01 0.005
 k 2.705 3.841 6.635 7.879
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-6x2+9x-2給出以下命題
(1)若直線y=a與y=f(x)的圖象有三個不同交點(diǎn),則實(shí)數(shù)的取值范圍是(-2,2)
(2)若函數(shù)y=f(x)+3bx不存在單調(diào)遞減區(qū)間,則實(shí)數(shù)b的取值范圍是(1,+∞)
(3)過點(diǎn)M(0,2)且與y=f(x)相切的直線有三條
(4)方程f(x)=
2
2-x
的所有根的和為16.
其中真命題的序號是
 
(寫出所有真命題的序號)

查看答案和解析>>

同步練習(xí)冊答案