【題目】已知: 、 是同一平面上的三個向量,其中 =(1,2).
(1)若| |=2 ,且 ,求 的坐標.
(2)若| |= ,且 +2 與2 垂直,求 的夾角θ

【答案】
(1)設(shè)

且| |=2

,

∴x=±2

=(2,4)或 =(﹣2,﹣4)


(2)∵( +2 )⊥(2

∴( +2 )(2 )=0

∴2 2+3 ﹣2 2=0

∴2| |2+3| || |cosθ﹣2| |2=0

∴2×5+3× × cosθ﹣2× =0

∴cosθ=﹣1

∴θ=π+2kπ

∵θ∈[0,π]

∴θ=π


【解析】(1)設(shè)出 的坐標,利用它與 平行以及它的模等于2 ,待定系數(shù)法求出 的坐標.(2)由 +2 與2 垂直,數(shù)量積等于0,求出夾角θ的余弦值,再利用夾角θ的范圍,求出此角的大。
【考點精析】掌握數(shù)量積表示兩個向量的夾角和數(shù)量積判斷兩個平面向量的垂直關(guān)系是解答本題的根本,需要知道設(shè)、都是非零向量,,的夾角,則;若平面的法向量為,平面的法向量為,要證,只需證,即證;即:兩平面垂直兩平面的法向量垂直.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知為常數(shù),對任意,均有恒成立.下列說法:

的周期為

②若為常數(shù))的圖像關(guān)于直線對稱,則;

③若,則必有;

④已知定義在上的函數(shù)對任意均有成立,且當時, ;又函數(shù)為常數(shù)),若存在使得成立,則的取值范圍是.其中說法正確的是____.(填寫所有正確結(jié)論的編號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在R上定義運算:xy=x(1﹣y),若不等式(x﹣a)(x﹣b)>0的解集是(2,3),則a+b的值為(
A.1
B.2
C.4
D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2sinxcosx﹣2cos2x. (Ⅰ)求f( );
(Ⅱ)求f(x)的最大值和單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}是首項a1=4的等比數(shù)列,且S3 , S2 , S4成等差數(shù)列,
(1)求數(shù)列{an}的通項公式;
(2)若bn=log2|an|,設(shè)Tn為數(shù)列 的前n項和,若Tn≤λbn+1對一切n∈N*恒成立,求實數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐P﹣ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC= ,AB=1,M是PB的中點.

(1)證明:面PAD⊥面PCD;
(2)求AC與PB所成的角;
(3)求面AMC與面BMC所成二面角的大小余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù) (x∈R),其中t∈R,將f(x)的最小值記為g(t).
(1)求g(t)的表達式;
(2)當﹣1≤t≤1時,要使關(guān)于t的方程g(t)=kt有且僅有一個實根,求實數(shù)k的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某貨輪勻速行駛在相距300海里的甲、乙兩地間運輸貨物,運輸成本由燃料費用和其它費用組成,已知該貨輪每小時的燃料費用與其航行速度的平方成正比(比例系數(shù)為0.5),其它費用為每小時800元,且該貨輪的最大航行速度為50海里/小時.
(1)請將從甲地到乙地的運輸成本y(元)表示為航行速度x(海里/小時)的函數(shù);
(2)要使從甲地到乙地的運輸成本最少,該貨輪應以多大的航行速度行駛?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點P(0,﹣1)是橢圓C1 =1(a>b>0)的一個頂點,C1的長軸是圓C2:x2+y2=4的直徑,l1 , l2是過點P且互相垂直的兩條直線,其中l(wèi)1交圓C2于A,B兩點,l2交橢圓C1于另一點D.

(1)求橢圓C1的方程;
(2)求△ABD面積的最大值時直線l1的方程.

查看答案和解析>>

同步練習冊答案