過點(diǎn)P(-2,0),且斜率為3的直線的方程是( 。
分析:利用直線的點(diǎn)斜式即可求得答案.
解答:解:∵直線l經(jīng)過P(-2,0),且斜率為3,
∴由點(diǎn)斜式得其方程為:y=3(x+2)=3x+6,
故選D.
點(diǎn)評(píng):本題考查直線的點(diǎn)斜式方程,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知l1、l2是過點(diǎn)P(-
2
,0)的兩條互相垂直的直線,且l1、l2與雙曲線y2-x2=1各有兩個(gè)交點(diǎn),分別為A1、B1和A2、B2
(1)求l1的斜率k1的取值范圍;
(2)若|A1B1|=
5
|A2B2|,求l1、l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)P(2,0)與圓x2+y2+2y-3=0相交的所有直線中,被圓截得的弦最長時(shí)的直線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(2,0)及圓C:x2+y2-6x+4y+4=0.
(Ⅰ)若直線l過點(diǎn)P且與圓心C的距離為1,求直線l的方程;
(Ⅱ)設(shè)過P直線l1與圓C交于M、N兩點(diǎn),當(dāng)|MN|=4時(shí),求以MN為直徑的圓的方程;
(Ⅲ)設(shè)直線ax-y+1=0與圓C交于A,B兩點(diǎn),是否存在實(shí)數(shù)a,使得過點(diǎn)P(2,0)的直線l2垂直平分弦AB?若存在,求出實(shí)數(shù)a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文)如圖,O為坐標(biāo)原點(diǎn),過點(diǎn)P(2,0)且斜率為k的直線l交拋物線y2=2x于A(x1,y1),B(x2,y2)兩點(diǎn).
(1)求x1x2與y1y2的值;
(2)求證:OA⊥OB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一條直線l過點(diǎn)P(2,0),且與直線y=x+8在y軸有相同的截距,求直線l的方程為
4x+y-8=0
4x+y-8=0

查看答案和解析>>

同步練習(xí)冊答案