從長度為1、3、5、7、9個(gè)單位的五條線段中任取三條作邊,能組成三角形的概率為( 。
A、
1
5
B、
3
5
C、
3
10
D、
2
5
考點(diǎn):列舉法計(jì)算基本事件數(shù)及事件發(fā)生的概率
專題:概率與統(tǒng)計(jì)
分析:分別列舉出所有的基本事件,再找到滿足條件的基本事件,利用古典概型的概率計(jì)算公式即可得出.
解答: 解:從長度分別為1,3,5,7,9個(gè)單位的5條線段中任取3條,分別為(1,3,5),(1,3,7),(1,3,9),(1,5,7),(1,5,9),(1,7,9),(3,5,7),(3,5,9),(3,7,9),(5,7,9)共有10種方法,其中能組成三角形的有以下3種:(3,5,7),(3,7,9),(5,7,9).
故能組成三角形的概率P=
3
10

故選:C.
點(diǎn)評:本題考查了古典概型的概率計(jì)算公式、三個(gè)數(shù)能組成三角形的條件,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

⊙O與⊙D相交于A,B兩點(diǎn),BC是⊙D的切線,點(diǎn)C在⊙O上,且AB=BC.若△ABC的面積為S,則⊙D的半徑的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O是△ABC所在平面內(nèi)一定點(diǎn),動點(diǎn)P滿足
OP
=
OA
+λ(
AB
sinB+
AC
sinC)(λ≥0),則P點(diǎn)的軌跡一定通過△ABC的(  )
A、內(nèi)心B、外心C、垂心D、重心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,定義P(x1,y1)、Q(x2,y2)之間的“直角距離”為d(P,Q)=|x1-x2|+|y1-y2|,則
①動點(diǎn)C(x,y)到坐標(biāo)原點(diǎn)的“直角距離”等于1,則動點(diǎn)C的軌跡關(guān)于x軸、y軸、原點(diǎn)對稱.
②設(shè)A(-1,9)、B(1,0),滿足到A的“直角距離”等于到B的“直角距離”的動點(diǎn)C的軌跡是一條長度為2的線段;
③設(shè)F1(-1,0),F(xiàn)2(1,0),C(x,y)則{(x,y)|d(C,F(xiàn)1)+d(C,F(xiàn)2)=4}⊆{(x,y)|
x2
4
+
y2
3
≤1}其中真命題有
 
(填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某中學(xué)某班對學(xué)生每天數(shù)學(xué)作業(yè)完成時(shí)間(分鐘)進(jìn)行調(diào)查,將所得數(shù)據(jù)調(diào)整后的頻率分布表和頻率分布直方圖如圖.
(1)補(bǔ)全頻率分布表和頻率分布直方圖;
(2)為了分析完成作業(yè)時(shí)間與聽課認(rèn)真程度等方面的關(guān)系,需要從這50人種利用分層抽樣的方法抽取10人作進(jìn)一步分析,則應(yīng)從完成作業(yè)時(shí)間再[40,45)內(nèi)的學(xué)生中抽取多少人?
(3)完成作業(yè)時(shí)間再[25,30)內(nèi)的學(xué)生中有3名男生和若干名女生,現(xiàn)從中任意抽取兩名同學(xué),求這兩名同學(xué)恰好都是男生的概率是多少?
完成作業(yè)時(shí)間頻率分布表
分組頻數(shù)頻率
[25,30)0.1
[30,35)10
[35,40)150.3
[40,45)150.3
[45,50]50.1
合計(jì)501

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD中,AB=2,BC=1,以點(diǎn)C為圓心,CB為半徑的圓與邊DC交于點(diǎn)E,F(xiàn)是
BE
上任意一點(diǎn)(包括端點(diǎn)),在矩形ABCD內(nèi)隨機(jī)取一點(diǎn)M,則點(diǎn)M落在△AFD內(nèi)部的概率的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某射手射擊1次,擊中目標(biāo)的概率為
2
3
.已知此人連續(xù)射擊4次,設(shè)每次射擊是否擊中目標(biāo)相互間沒有影響,則他“擊中3次且恰有兩次連中”的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b∈R,直線l1:ax+2y+3=0和直線l2:x+by+2=0,則“ab=2”是“l(fā)1∥l2”的( 。
A、充分不必要條件.
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:(m-1)x+y+2=0,l2:8x+(m+1)y+(m-1)=0,則“m=3”是“l(fā)1∥l2”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案