【題目】已知函數(shù),,其中a為常數(shù),e是自然對數(shù)的底數(shù),曲線在其與y軸的交點處的切線記作,曲線在其與x軸的交點處的切線記作,且.

1)求之間的距離;

2)若存在x使不等式成立,求實數(shù)m的取值范圍.

【答案】(1);(2)

【解析】

(1)由導(dǎo)數(shù)的幾何意義求出,因為,所以切線斜率相等求出,求得兩直線的方程,代入兩平行直線間的距離公式即可得解;(2)不等式化簡為

,令,利用導(dǎo)數(shù)求出的最大值,根據(jù)不等式有解即可求出m的取值范圍.

1)函數(shù)的圖像與y軸的交點為,函數(shù)的圖像與x軸的交點為

,,

,∴,得,又∵,∴.

,∴切線過點,斜率為;

切線過點,斜率為,

,

∴兩平行切線間的距離.

2)由,得,故時有解,令,則只需,

當(dāng)時,

當(dāng)時,可求得,

,當(dāng)且僅當(dāng)時取等號,而,

,故,即,

∴函數(shù)在區(qū)間上單調(diào)遞減,故,即,

∴實數(shù)m的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計公式分別為.]

(1)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;

(2)試估計該公司投入萬元廣告費用之后,對應(yīng)銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);

(3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:

廣告投入 (單位:萬元)

1

2

3

4

5

銷售收益 (單位:萬元)

2

3

2

7

由表中的數(shù)據(jù)顯示, 之間存在著線性相關(guān)關(guān)系,請將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的極小值為

1)求實數(shù)k的值;

2)令,當(dāng)時,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了節(jié)能減排,發(fā)展低碳經(jīng)濟,我國政府從2001年起就通過相關(guān)政策推動新能源汽車產(chǎn)業(yè)發(fā)展.下面的圖表反映了該產(chǎn)業(yè)發(fā)展的相關(guān)信息:

中國新能源汽車產(chǎn)銷情況一覽表

新能源汽車生產(chǎn)情況

新能源汽車銷售情況

產(chǎn)品(萬輛)

比上年同期
增長(%)

銷量(萬輛)

比上年同期
增長(%)

2018年3月

6.8

105

6.8

117.4

4月

8.1

117.7

8.2

138.4

5月

9.6

85.6

10.2

125.6

6月

8.6

31.7

8.4

42.9

7月

9

53.6

8.4

47.7

8月

9.9

39

10.1

49.5

9月

12.7

64.4

12.1

54.8

10月

14.6

58.1

13.8

51

11月

17.3

36.9

16.9

37.6

1-12月

127

59.9

125.6

61.7

2019年1月

9.1

113

9.6

138

2月

5.9

50.9

5.3

53.6

根據(jù)上述圖表信息,下列結(jié)論錯誤的是(

A.20173月份我國新能源汽車的產(chǎn)量不超過萬輛

B.2017年我國新能源汽車總銷量超過萬輛

C.20188月份我國新能源汽車的銷量高于產(chǎn)量

D.20191月份我國插電式混合動力汽車的銷量低于萬輛

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線:,,四點都在拋物線.

1)若線段的斜率為,求線段中點的縱坐標(biāo);

2)記,若直線,均過定點,且,分別為的中點,證明:,,三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線過點,傾斜角為,在以坐標(biāo)原點為極點,軸的非負半軸為極軸的極坐標(biāo)系中,曲線的方程為.

1)寫出直線的參數(shù)方程和曲線的直角坐標(biāo)方程;

2)若直線與曲線相交于兩點,設(shè)點,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高鐵和航空的飛速發(fā)展不僅方便了人們的出行,更帶動了我國經(jīng)濟的巨大發(fā)展.據(jù)統(tǒng) ,2018年這一年內(nèi)從 市到市乘坐高鐵或飛機出行的成年人約為萬人次.為了 解乘客出行的滿意度,現(xiàn)從中隨機抽取人次作為樣本,得到下表(單位:人次):

滿意度

老年人

中年人

青年人

乘坐高鐵

乘坐飛機

乘坐高鐵

乘坐飛機

乘坐高鐵

乘坐飛機

10(滿意)

12

1

20

2

20

1

5(一般)

2

3

6

2

4

9

0(不滿意)

1

0

6

3

4

4

span>1)在樣本中任取,求這個出行人恰好不是青年人的概率;

2)在2018年從市到市乘坐高鐵的所有成年人中,隨機選取人次,記其中老年人出行的人次為.以頻率作為概率,的分布列和數(shù)學(xué)期望;

3)如果甲將要從市出發(fā)到,那么根據(jù)表格中的數(shù)據(jù),你建議甲是乘坐高鐵還是飛機? 并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地要建造一個邊長為2(單位:)的正方形市民休閑公園,將其中的區(qū)域開挖成一個池塘,如圖建立平面直角坐標(biāo)系后,點的坐標(biāo)為,曲線是函數(shù)圖像的一部分,過邊上一點在區(qū)域內(nèi)作一次函數(shù))的圖像,與線段交于點(點不與點重合),且線段與曲線有且只有一個公共點,四邊形為綠化風(fēng)景區(qū).

1)求證:;

2)設(shè)點的橫坐標(biāo)為,

①用表示、兩點的坐標(biāo);

②將四邊形的面積表示成關(guān)于的函數(shù),并求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C的極坐標(biāo)方程是ρ6sinθ,建立以極點為坐標(biāo)原點,極軸為x軸正半軸的平面直角坐標(biāo)系.直線l的參數(shù)方程是,(t為參數(shù))

(1)求曲線C的直角坐標(biāo)方程;

(2)若直線l與曲線C相交于A,B兩點,且|AB|=,求直線的斜率k

查看答案和解析>>

同步練習(xí)冊答案