【題目】已知數(shù)列{an}的通項(xiàng)為an , 前n項(xiàng)和為sn , 且an是sn與2的等差中項(xiàng),數(shù)列{bn}中,b1=1,點(diǎn)P(bn , bn+1)在直線x﹣y+2=0上. (Ⅰ)求數(shù)列{an}、{bn}的通項(xiàng)公式an , bn
(Ⅱ)設(shè){bn}的前n項(xiàng)和為Bn , 試比較 與2的大。
(Ⅲ)設(shè)Tn= ,若對(duì)一切正整數(shù)n,Tn<c(c∈Z)恒成立,求c的最小值.

【答案】解:(Ⅰ)由題意可得2an=sn+2, 當(dāng)n=1時(shí),a1=2,
當(dāng)n≥2時(shí),有2an1=sn1+2,兩式相減,整理得an=2an1即數(shù)列{an}是以2為首項(xiàng),2為公比的等比數(shù)列,故an=2n
點(diǎn)P(bn , bn+1)在直線x﹣y+2=0上得出bn﹣bn+1+2=0,即bn+1﹣bn=2,
即數(shù)列{bn}是以1為首項(xiàng),2為公差的等差數(shù)列,
因此bn=2n﹣1.
(Ⅱ)Bn=1+3+5+…+(2n﹣1)=n2

=
(Ⅲ)Tn=

① ﹣②得


∴滿足條件Tn<c的最小值整數(shù)c=3
【解析】(Ⅰ)利用已知條件得出數(shù)列的通項(xiàng)和前n項(xiàng)和之間的等式關(guān)系,再結(jié)合二者間的基本關(guān)系,得出數(shù)列{an}的通項(xiàng)公式,根據(jù){bn}的相鄰兩項(xiàng)滿足的關(guān)系得出遞推關(guān)系,進(jìn)一步求出其通項(xiàng)公式;(Ⅱ)利用放縮法轉(zhuǎn)化各項(xiàng)是解決該問(wèn)題的關(guān)鍵,將所求的各項(xiàng)放縮轉(zhuǎn)化為能求和的一個(gè)數(shù)列的各項(xiàng)估計(jì)其和,進(jìn)而達(dá)到比較大小的目的;(Ⅲ)利用錯(cuò)位相減法進(jìn)行求解Tn是解決本題的關(guān)鍵,然后對(duì)相應(yīng)的和式進(jìn)行估計(jì)加以解決.
【考點(diǎn)精析】本題主要考查了數(shù)列的前n項(xiàng)和的相關(guān)知識(shí)點(diǎn),需要掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計(jì)能獲得10萬(wàn)元到1 000萬(wàn)元的投資收益.現(xiàn)準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金y(單位:萬(wàn)元)隨投資收益x(單位:萬(wàn)元)的增加而增加,且獎(jiǎng)金不超過(guò)9萬(wàn)元,同時(shí)獎(jiǎng)金不超過(guò)投資收益的20%.
(1)請(qǐng)分析函數(shù)y= +1是否符合公司要求的獎(jiǎng)勵(lì)函數(shù)模型,并說(shuō)明原因;
(2)若該公司采用函數(shù)模型y= 作為獎(jiǎng)勵(lì)函數(shù)模型,試確定最小的正整數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)各項(xiàng)均為正數(shù)的數(shù)列的前n項(xiàng)和為,滿足,,公比大于1的等比數(shù)列滿足 .

1求證數(shù)列是等差數(shù)列,并求其通項(xiàng)公式

2,求數(shù)列的前n項(xiàng)和;

3)在(2)的條件下,若對(duì)一切正整數(shù)n恒成立求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)為調(diào)研學(xué)生在, 兩家餐廳用餐的滿意度,從在, 兩家餐廳都用過(guò)餐的學(xué)生中隨機(jī)抽取了100人,每人分別對(duì)這兩家餐廳進(jìn)行評(píng)分,滿分均為60分.

整理評(píng)分?jǐn)?shù)據(jù),將分?jǐn)?shù)以10為組距分成6組: , , , ,得到餐廳分?jǐn)?shù)的頻率分布直方圖,和餐廳分?jǐn)?shù)的頻數(shù)分布表:

定義學(xué)生對(duì)餐廳評(píng)價(jià)的“滿意度指數(shù)”如下:

分?jǐn)?shù)

滿意度指數(shù)

(Ⅰ)在抽樣的100人中,求對(duì)餐廳評(píng)價(jià)“滿意度指數(shù)”為0的人數(shù);

(Ⅱ)從該校在, 兩家餐廳都用過(guò)餐的學(xué)生中隨機(jī)抽取1人進(jìn)行調(diào)查,試估計(jì)其對(duì)餐廳評(píng)價(jià)的“滿意度指數(shù)”比對(duì)餐廳評(píng)價(jià)的“滿意度指數(shù)”高的概率;

(Ⅲ)如果從, 兩家餐廳中選擇一家用餐,你會(huì)選擇哪一家?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中.

(Ⅰ)求函數(shù)的零點(diǎn)個(gè)數(shù);

(Ⅱ)證明: 是函數(shù)存在最小值的充分而不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓與直線相切.

(1)若直線與圓交于兩點(diǎn),求;

(2)設(shè)圓軸的負(fù)半軸的交點(diǎn)為,過(guò)點(diǎn)作兩條斜率分別為的直線交圓兩點(diǎn),且,試證明直線恒過(guò)一定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)在拋物線上,且到拋物線的焦點(diǎn)的距離等于2.

求拋物線的方程;

若直線與拋物線相交于兩點(diǎn),且為坐標(biāo)原點(diǎn)),求證直線恒過(guò)軸上的某定點(diǎn),并求出該定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司生產(chǎn)電飯煲,每年需投入固定成本40萬(wàn)元,每生產(chǎn)1萬(wàn)件還需另投入16萬(wàn)元的變動(dòng)成本,設(shè)該公司一年內(nèi)共生產(chǎn)電飯煲萬(wàn)件并全部銷售完,每一萬(wàn)件的銷售收入為萬(wàn)元,且),該公司在電飯煲的生產(chǎn)中所獲年利潤(rùn)為(萬(wàn)元),(注:利潤(rùn)=銷售收入-成本)

1寫出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(萬(wàn)件)的函數(shù)解析式,并求年利潤(rùn)的最大值;

2為了讓年利潤(rùn)不低于2360萬(wàn)元,求年產(chǎn)量的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)(噸),一位居民的月用水量不超過(guò)的部分按平價(jià)收費(fèi),超過(guò)的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過(guò)抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照, , , 分成9組,制成了如圖所示的頻率分布直方圖.

(Ⅰ)求直方圖中的值;

(Ⅱ)若將頻率視為概率,從該城市居民中隨機(jī)抽取3人,記這3人中月均用水量不低于3噸的人數(shù)為,求的分布列與數(shù)學(xué)期望.

(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過(guò)標(biāo)準(zhǔn)(噸),估計(jì)的值(精確到0.01),并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案