19.某校高三年級有1221名同學,現(xiàn)采用系統(tǒng)抽樣方法舟曲37名同學做問卷調查,將1221名同學按1,2,3,4,…,1221隨機編號,則抽取的37名同學中,標號落入?yún)^(qū)間[496,825]的人數(shù)有( 。
A.12人B.11人C.10人D.9分

分析 根據(jù)系統(tǒng)抽樣方法,從1221人中抽取37人,即從33人抽取1人.從而得出從區(qū)間[496,825]共330人中抽取的人數(shù)即可.

解答 解:使用系統(tǒng)抽樣方法,從1221人中抽取37人,即從33人抽取1人.
∴從區(qū)間[496,825]共330人中抽取10人.
故選:C.

點評 本題主要考查系統(tǒng)抽樣的定義和方法,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

9.某重點高中擬把學校打造成新型示范高中,為此制定了學生“七不準”,“一日三省十問”等新的規(guī)章制度.新規(guī)章制度實施一段時間后,學校就新規(guī)章制度隨機抽取部分學生進行問卷調查,調查卷共有10個問題,每個問題10分,調查結束后,按分數(shù)分成5組:[50,60),60,70),[70,80),[80,90),[90,100],并作出頻率分布直方圖與樣本分數(shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).
(1)求樣本容量n和頻率分布直方圖中的x、y的值;
(2)在選取的樣本中,從分數(shù)在70分以下的學生中隨機抽取2名學生進行座談會,求所抽取的2名學生中恰有一人得分在[50,60)內的概率.
5
6
7
8
9
3  4



1  2  3  4  5  6   7  8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.給出下列函數(shù):①f(x)=$\frac{{{x^2}-1}}{x-1}$,g(x)=x+1;②f(x)=|x|,g(x)=$\sqrt{x^2}$;③f(x)=x2-2x-1,g(t)=t2-2t-1.其中,是同一函數(shù)的是( 。
A.①②③B.①③C.②③D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知f(x)=$\frac{x+1}{x}$,則f(1)等于( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.(1)計算27${\;}^{\frac{2}{3}}}$+lg5-2log23+lg2+log29.
(2)已知f(x)=3x2-5x+2,求f($-\sqrt{2}}$)、f(-a)、f(a+3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知棱長都是2的直三棱柱的俯視圖是一個正三角形,則該直三棱柱的主視圖的面積不可能等于( 。
A.4B.2$\sqrt{3}$C.$\frac{19}{5}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,在四棱臺ABCD-A1B1C1D1中,平面BCC1B1⊥平面ABCD,四邊形ABCD為平行四邊形,四邊形BCC1B1為等腰梯形,BC=4,B1C1=C1C=2,AB=5,AC⊥BC.
(1)求證:BC1⊥平面ACC1;
(2)求直線BC1與平面ADD1A1所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設集合A=R,集合B={y|y>0},下列對應關系中是從集合A到集合B的映射的是(  )
A.x→y=|x|B.x→y=$\frac{1}{{{{({x-1})}^2}}}$C.$x→y={({\frac{1}{2}})^x}$D.$x→y=\sqrt{{{({\frac{1}{2}})}^x}-1}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)f(x)=2x+1,則函數(shù)y=f($\sqrt{{x^2}-2x-3}$)的單調遞減區(qū)間為( 。
A.(-∞,1)B.(-∞,-1]C.(3,+∞)D.(1,+∞)

查看答案和解析>>

同步練習冊答案