【題目】已知函數(shù)

1)求在點(diǎn)處的切線方程;

2)求證:上僅有個(gè)零點(diǎn).

【答案】1;(2)證明見解析.

【解析】

1)求出,然后利用點(diǎn)斜式寫出所求切線的方程;

2)利用當(dāng)時(shí),來說明函數(shù)上沒有零點(diǎn),并利用函數(shù)的單調(diào)性和零點(diǎn)存在定理證明出函數(shù)在區(qū)間上有且只有一個(gè)零點(diǎn),并結(jié)合,可證明出函數(shù)在區(qū)間上有兩個(gè)零點(diǎn).

1,則,,.

因此,函數(shù)在點(diǎn)處的切線方程為,即;

2)當(dāng)時(shí),,此時(shí),,所以,函數(shù)在區(qū)間上沒有零點(diǎn);

,下面只需證明函數(shù)在區(qū)間上有且只有一個(gè)零點(diǎn).

,構(gòu)造函數(shù),則,

當(dāng)時(shí),

所以,函數(shù)在區(qū)間上單調(diào)遞增,

,,由零點(diǎn)存在定理知,存在,使得,且當(dāng)時(shí),,當(dāng)時(shí),.

所以,函數(shù)處取得極小值,則,

,所以,由零點(diǎn)存在定理可知,函數(shù)在區(qū)間上有且只有一個(gè)零點(diǎn).

綜上所述,函數(shù)在區(qū)間上有且僅有兩個(gè)零點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)討論的單調(diào)性;

2)若有兩個(gè)極值點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我們在求高次方程或超越方程的近似解時(shí)常用二分法求解,在實(shí)際生活中還有三分法.比如借助天平鑒別假幣.有三枚形狀大小完全相同的硬幣,其中有一假幣(質(zhì)量較輕),把兩枚硬幣放在天平的兩端,若天平平衡,則剩余一枚為假幣,若天平不平衡,較輕的一端放的硬幣為假幣.現(xiàn)有 27 枚這樣的硬幣,其中有一枚是假幣(質(zhì)量較輕),如果只有一臺天平,則一定能找到這枚假幣所需要使用天平的最少次數(shù)為( )

A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C的圓心C在直線上,且與x軸正半軸相切,點(diǎn)C與坐標(biāo)原點(diǎn)O的距離為.

1)求圓C的標(biāo)準(zhǔn)方程;

2)直線l過點(diǎn) 且與圓C相交于AB兩點(diǎn),求弦長的最小值及此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)某工廠生產(chǎn)的一種產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值服從正態(tài)分布,若一件產(chǎn)品的質(zhì)量指標(biāo)值介于90120之間時(shí),稱該產(chǎn)品為優(yōu)質(zhì)品.

1)計(jì)算該工廠生產(chǎn)的這種產(chǎn)品的優(yōu)質(zhì)品率.

2)某用戶從該工廠購買了100件這種產(chǎn)品,記表示這100件產(chǎn)品中優(yōu)質(zhì)品的件數(shù),求隨機(jī)變量的數(shù)學(xué)期望.

3)必須從這工廠中購買多少件產(chǎn)品,才能使其中至少有1件產(chǎn)品是優(yōu)質(zhì)品的概率大于0.9?

①參考數(shù)據(jù):若隨機(jī)變量),則,.

②計(jì)算時(shí),所有的小數(shù)都精確到小數(shù)點(diǎn)后4位,例如:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的通項(xiàng)公式為an=則數(shù)列{an}中的最大項(xiàng)為(  )

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019613日,三屆奧運(yùn)亞軍,羽壇傳奇,馬來西亞名將李宗偉宣布退役,當(dāng)天有大量網(wǎng)友關(guān)注此事件,某網(wǎng)上論壇從關(guān)注此事件跟帖中,隨機(jī)抽取了100名網(wǎng)友進(jìn)行調(diào)查統(tǒng)計(jì),先分別統(tǒng)計(jì)他們在跟帖中的留言條數(shù),再把網(wǎng)友人數(shù)按留言條數(shù)分成6組;,得到如下圖所小的頻率分布直方圖;并將其中留言不低于40條的規(guī)定為“強(qiáng)烈關(guān)注”,否則為“一般關(guān)注”,對這100名網(wǎng)友進(jìn)一步統(tǒng)計(jì),得到部分?jǐn)?shù)據(jù)如下的列聯(lián)表.

1)在答題卡上補(bǔ)全2×2列聯(lián)表中數(shù)據(jù),并判斷能否有95%的把握認(rèn)為網(wǎng)友對此事件是否為“強(qiáng)烈關(guān)注”與性別有關(guān)?

2)該論壇欲在上述“強(qiáng)烈關(guān)注”的網(wǎng)友中按性別進(jìn)行分層抽樣,共抽取5人,并在此5人中隨機(jī)抽取兩名接受訪談,記女性訪談?wù)叩娜藬?shù)為占,求5的分布列與數(shù)學(xué)期望.

0.150

0.100

0.050

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

參考公式與數(shù)據(jù):,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)正和一個(gè)平行四邊形ABDE在同一個(gè)平面內(nèi),其中,AB,DE的中點(diǎn)分別為F,G.現(xiàn)沿直線AB翻折成,使二面角,設(shè)CE中點(diǎn)為H.

1)(i)求證:平面平面AGH

ii)求異面直線ABCE所成角的正切值;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義在區(qū)間內(nèi)的單調(diào)函數(shù),且對任意,都有,設(shè)的導(dǎo)函數(shù),,則函數(shù)的零點(diǎn)個(gè)數(shù)為( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

同步練習(xí)冊答案