7.已知f(x)=5x5+4x4+3x3+2x2+x+1,若用秦九韶算法求f(5)的值,下面說(shuō)法正確的是( 。
A.至多4乘法運(yùn)算和5次加法運(yùn)算B.15次乘法運(yùn)算和5次加法運(yùn)算
C.10次乘法運(yùn)算和5次加法運(yùn)算D.至多5次乘法運(yùn)算和5次加法運(yùn)算

分析 由秦九韶算法的原理,可以把多項(xiàng)式f(x)=5x5+4x4+3x3+2x2+x+1變形計(jì)算出乘法與加法的運(yùn)算次數(shù).

解答 解:多項(xiàng)式f(x)=5x5+4x4+3x3+2x2+x+1=((((5x+4)x+3)x+2)x+1)x+1,
發(fā)現(xiàn)要經(jīng)過(guò)5次乘法5次加法運(yùn)算.
故需要做乘法和加法的次數(shù)分別為:5、5
故選:D.

點(diǎn)評(píng) 本題考查秦九韶算法,考查在用秦九韶算法解題時(shí)一共會(huì)進(jìn)行多少次加法和乘法運(yùn)算,是一個(gè)基礎(chǔ)題,解題時(shí)注意最后加還是不加常數(shù)項(xiàng),可以直接看出結(jié)果.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在區(qū)間[-1,1]上隨機(jī)取一個(gè)數(shù)x,x2的值介于0到$\frac{1}{4}$之間的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知△ABC三個(gè)頂點(diǎn)A(3,8)、B(2,5)、C(-1,-6),求AC邊上的中線所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知f(x)=x(x-1)(x-2)…(x-100),在x=0處的導(dǎo)數(shù)值為( 。
A.0B.1002C.200D.100×99×…×2×1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若2cos2B=4cosB-3
(Ⅰ)求角B的大小
(Ⅱ)若S△ABC=$\sqrt{3}$,asinA+csinC=5sinB,求邊b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.設(shè)方程f(x,y)=0的解集非空.如果命題“坐標(biāo)滿足方程f(x,y)=0的點(diǎn)都在曲線C上”是不正確的,有下面5個(gè)命題:
①坐標(biāo)滿足f(x,y)=0的點(diǎn)都不在曲線C上;
②曲線C上的點(diǎn)的坐標(biāo)都不滿足f(x,y)=0;
③坐標(biāo)滿足f(x,y)=0的點(diǎn)不都在曲線C上;
④一定有不在曲線C上的點(diǎn),其坐標(biāo)滿足f(x,y)=0;
⑤坐標(biāo)滿足f(x,y)=0的點(diǎn)有些在曲線C上,有些不在曲線C上.
則上述命題正確的是③④.(填上所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,$3{a_1},\frac{1}{2}{a_3},2{a_2}$成等差數(shù)列,則$\frac{{{a_{11}}+{a_{13}}}}{{{a_8}+{a_{10}}}}$=( 。
A.27B.-1或27C.3D.-1或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知集合M={x||x-1|≤2},N={x|2x>1},則M∩N={x|0<x≤3},M∪∁RN={x|x≤3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若a=log32,b=20.3,c=log${\;}_{\frac{1}{5}}$2,則a,b,c的大小關(guān)系用“<”表示為c<a<b.

查看答案和解析>>

同步練習(xí)冊(cè)答案