【題目】設F為拋物線C:y2=3x的焦點,過F且傾斜角為30°的直線交C于A,B兩點,O為坐標原點,則△OAB的面積為( )
A.
B.
C.
D.
【答案】D
【解析】解:由y2=2px,得2p=3,p= ,
則F( ,0).
∴過A,B的直線方程為y= (x﹣ ),
即x= y+ .
聯(lián)立 ,得4y2﹣12 y﹣9=0.
設A(x1 , y1),B(x2 , y2),
則y1+y2=3 ,y1y2=﹣ .
∴S△OAB=S△OAF+S△OFB= × |y1﹣y2|= = × = .
故選:D.
由拋物線方程求出焦點坐標,由直線的傾斜角求出斜率,寫出過A,B兩點的直線方程,和拋物線方程聯(lián)立后化為關于y的一元二次方程,由根與系數(shù)關系得到A,B兩點縱坐標的和與積,把△OAB的面積表示為兩個小三角形AOF與BOF的面積和得答案.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,其左、右焦點分別為,點是坐標平面內一點,且, (為坐標原點).
(1)求橢圓的方程;
(2)過點且斜率為的動直線交橢圓于兩點,在軸上是否存在定點,使以為直徑的圓恒過該點?若存在,求出點的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設等差數(shù)列{an}的公差為d,前n項和為Sn , 等比數(shù)列{bn}的公比為q,已知b1=a1 , b2=2,q=d,S10=100.
(1)求數(shù)列{an},{bn}的通項公式
(2)當d>1時,記cn= ,求數(shù)列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有8名奧運會志愿者,其中志愿者A1 , A2 , A3通曉日語,B1 , B2 , B3通曉俄語,C1 , C2通曉韓語.從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個小組.
(1)求A1被選中的概率;
(2)求B1和C1不全被選中的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R上的偶函數(shù),其圖象關于點 對稱,且在區(qū)間 上是單調函數(shù),求φ和ω的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長為1的正方形,側棱PA的長為2,且PA與AB,AD的夾角都等于60°,M是PC的中點,設 = , = , = .
(1)試用 , , 表示出向量 ;
(2)求BM的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 , 滿足:| |=2,| |=4
(1)若( ) =﹣20,求向量 與 的夾角及|3 + |
(2)在矩形ABCD中,CD的中點為E,BC的中點為F,設 = , = ,試用向量 , 表示 , ,并求 的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sinωx+cosωx(ω>0),x∈R,若函數(shù)f(x)在區(qū)間(﹣ω,ω)內單調遞增,且函數(shù)y=f(x)的圖象關于直線x=ω對稱,則ω的值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com