已知平面上一定點(diǎn)C(2,O)和直線l:x=8,P為該平面上一動點(diǎn),作PQ⊥l,垂足為Q,且
(1)問點(diǎn)P在什么曲線上?并求出該曲線的方程;
(2)若EF為圓N:x2+(y-1)2=1的任一條直徑,求的最大值.
【答案】分析:(1)根據(jù)平面向量數(shù)量積的運(yùn)算性質(zhì),得42=2.設(shè)P(x,y),則Q(8,y),運(yùn)用距離公式化簡可得3x2+4y2=48,整理得+=1,由此可得點(diǎn)P的軌跡是以(±2,0)為焦點(diǎn)的橢圓;
(2)根據(jù)題意,得|NE|=|NF|=1且=-,由此化簡得=-1,根據(jù)橢圓方程與兩點(diǎn)的距離公式,求出當(dāng)P的縱坐標(biāo)為-3時的最大值為20,由此即得=-1的最大值為19.
解答:解:(1)設(shè)P的坐標(biāo)為P(x,y),則Q(8,y)
,得:42=2
∴4[(x-2)2+y2]=[(x-8)2+(y-y)2],化簡得3x2+4y2=48,
∴點(diǎn)P的軌跡方程為+=1,此曲線是以(±2,0)為焦點(diǎn)的橢圓;
(2)∵EF為圓N的直徑,∴|NE|=|NF|=1,且=-
=()•()=()•()=-1
∵點(diǎn)P為橢圓+=1上的點(diǎn),滿足x2=16-
∵N(1,0),∴=x2+(y-1)2=-(y+3)2+20
∵橢圓+=1上點(diǎn)P縱坐標(biāo)滿足 y∈[-2,2]
∴當(dāng)y=-3時,的最大值為20,故=-1的最大值等于19.
點(diǎn)評:本題給出動點(diǎn)P的軌跡,求其方程并研究向量數(shù)量積的最大值,著重考查了向量的數(shù)量積、橢圓的標(biāo)準(zhǔn)方程與簡單性質(zhì)和直線與圓等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知平面上一定點(diǎn)C(4,0)和一定直線l:x=1,P為該平面上一動點(diǎn),作PQ⊥l,垂足為Q,且(
PC
+2
PQ
)•(
PC
-2
PQ
)=0

(1)問:點(diǎn)P在什么曲線上?并求出該曲線的方程;
(2)設(shè)直線l:y=kx+1與(1)中的曲線交于不同的兩點(diǎn)A、B,是否存在實(shí)數(shù)k,使得以線段AB為直徑的圓經(jīng)過點(diǎn)D(0,-2)?若存在,求出k的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面上一定點(diǎn)C(-1,0)和一直線l:x=-4,P(x,y)為該平面上一動點(diǎn),作PQ⊥l,垂足為Q,且(
PQ
+2
PC
)•(
PQ
-2
PC
)=0

(1)求點(diǎn)P的軌跡方程;
(2)點(diǎn)O是坐標(biāo)原點(diǎn),過點(diǎn)C的直線與點(diǎn)P的軌跡交于A,B兩點(diǎn),求
OA
OB
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•眉山二模)已知平面上一定點(diǎn)C(-1,0)和一定直線l:x=-4.P為該平面上一動點(diǎn),作PQ⊥l,垂足為Q,(
PQ
+2
PC
)(
PQ
-2
PC
)=0

(1)問點(diǎn)P在什么曲線上,并求出該曲線方程;
(2)點(diǎn)O是坐標(biāo)原點(diǎn),A、B兩點(diǎn)在點(diǎn)P的軌跡上,若
OA
OB
=(1+λ)
OC
,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面上一定點(diǎn)C(2,O)和直線l:x=8,P為該平面上一動點(diǎn),作PQ⊥l,垂足為Q,且(
PC
+
1
2
PQ
)•(
PC
-
1
2
PQ
)=0

(1)問點(diǎn)P在什么曲線上?并求出該曲線的方程;
(2)若EF為圓N:x2+(y-1)2=1的任一條直徑,求
PE
PF
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面上一定點(diǎn)C(4,0)和一定直線為該平面上一動點(diǎn),作,垂足為Q,且.

   (1)問點(diǎn)P在什么曲線上?并求出該曲線的方程;

   (2)設(shè)直線與(1)中的曲線交于不同的兩點(diǎn)A、B,是否存在實(shí)數(shù)k,使得以線段AB為直徑的圓經(jīng)過點(diǎn)D(0,-2)?若存在,求出k的值,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案