已知函數(shù)f(x)=x+
1
x
,(x>0),以點(diǎn)(n,f(n))為切點(diǎn)作函數(shù)圖象的切線ln(n≥1,n∈Z),直線x=n+1與函數(shù)y=f(x)圖象及切線ln分別相交于An,Bn,記an=|AnBn|.
(Ⅰ)求切線ln的方程及數(shù)列{an}的通項(xiàng);
(Ⅱ)設(shè)數(shù)列{nan}的前n項(xiàng)和為Sn,求證:Sn<1.
考點(diǎn):數(shù)列與不等式的綜合
專題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用,點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:(Ⅰ)求出原函數(shù)的導(dǎo)函數(shù),得到過點(diǎn)(n,f(n))的切線方程,和曲線聯(lián)立求得An,Bn的坐標(biāo),由兩點(diǎn)間的距離公式求得an=|AnBn|;
(Ⅱ)把a(bǔ)n代入nan,由裂項(xiàng)相消法求數(shù)列{nan}的前n項(xiàng)和為Sn,放縮證得Sn<1.
解答: (Ⅰ)解:對f(x)=x+
1
x
,(x>0)求導(dǎo),得f(x)=1-
1
x2

則切線ln方程為:y-(n+
1
n
)=(1-
1
n2
)(x-n)
,即y=(1-
1
n2
)x+
2
n
,
把x=n+1分別代入f(x)=x+
1
x
y=(1-
1
n2
)x+
2
n
,
An(n+1,n+1+
1
n+1
)
,Bn(n+1,n+1+
n-1
n2
)
,
由an=|AnBn|知,an=|
1
n+1
-
n-1
n2
|
=
1
n2(n+1)
;
(Ⅱ)證明:∵nan=n•
1
n2(n+1)
=
1
n(n+1)
=
1
n
-
1
n+1
,
∴Sn=1•a1+2•a2+…+n•an
=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
=1-
1
n+1
<1.
點(diǎn)評:本題考查了數(shù)列的函數(shù)特性,訓(xùn)練了利用裂項(xiàng)相消法求數(shù)列的和,考查了利用放縮法證明不等式,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的各項(xiàng)均為正數(shù),執(zhí)行程序框圖(如圖),當(dāng)k=4時,S=
1
3
,則a2014=( 。
A、2012B、2013
C、2014D、2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD和矩形ABEF中,矩形ABEF可沿AB任意翻折,AF=AD,M、N分別在AE、DB上運(yùn)動,當(dāng)F、A、D不共線,M、N不與A、D重合,且AM=DN時,有( 。
A、MN∥平面FAD
B、MN與平面FAD相交
C、MN⊥平面FAD
D、MN與平面FAD可能平行,也可能相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列敘述中,正確的個數(shù)是( 。
①命題p:“?x∈R,x2-2≥0”的否定形式為¬p:“?x∈R,x2-2<0”;
②O是△ABC所在平面上一點(diǎn),若
OA
OB
=
OB
OC
=
OC
OA
,則O是△ABC的垂心;
③“M>N”是“(
2
3
M>(
2
3
N”的充分不必要條件;
④命題“若x2-3x-4=0,則x=4”的逆否命題為“若x≠4,則x2-3x-4≠0”;
⑤已知
a
=(2,-1),
b
=(m,m-1),則
a
b
的夾角為銳角充要條件為:m>-1.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bx2在點(diǎn)(3,f(3))處的切線方程為12x+2y-27=0.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若方程f(x)=-
1
2
x2+m
有三個不同的解,求實(shí)數(shù)m的取值范圍;
(Ⅲ)若不等式f(x)-
3
2
x2+(k+1)x≥0(k∈R)
對于x∈(-∞,0)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從旅游景點(diǎn)A到B有一條100公里的水路,某輪船公司開設(shè)一個觀光項(xiàng)目,已知游輪每小時使用的燃料費(fèi)用與速度的立方成正比例,其他費(fèi)用為每小時3240元,游輪最大時速為50km/h,當(dāng)游輪速度為10km/h,燃料費(fèi)用為每小時60元,若單程票價定為150元/人.
(1)一艘游輪單程以40km/h航行,所載游客為180人,輪船公司獲得的利潤是多少?
(2)如果輪船公司要獲取最大利潤,游輪的速度為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2,1),
b
=(x,y)
(Ⅰ)若x∈{-1,0,1},y∈{-2,-1,2},求向量
a
b
的概率;
(Ⅱ)若用計(jì)算機(jī)產(chǎn)生的隨機(jī)二元數(shù)組(x,y)構(gòu)成區(qū)域Ω:
-1<x<1
-2<y<2
,求二元數(shù)組(x,y)滿足x2+y2≥1的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把一顆骰子投擲兩次,觀察出現(xiàn)的點(diǎn)數(shù),并記第一次出現(xiàn)的點(diǎn)數(shù)為a,第二次出現(xiàn)的點(diǎn)數(shù)為b.試就方程組
ax+by=3
x+2y=2
解答下列問題:
(Ⅰ)求方程組沒有解的概率;
(Ⅱ)求以方程組的解為坐標(biāo)的點(diǎn)在第四象限的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

焦點(diǎn)在y軸上,漸近線方程為y=±2x的雙曲線的離心率為
 

查看答案和解析>>

同步練習(xí)冊答案