已知首項為的等比數(shù)列{an}是遞減數(shù)列,其前n項和為Sn,且S1+a1,S2+a2,S3+a3成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)已知,求數(shù)列{bn}的前n項和
(I)an=a1=()n;(Ⅱ).

試題分析:(I){an}是一等比數(shù)列,且a1=.設(shè)等比數(shù)列{an}的公比為q,由S1+a1,S2+a2,S3+a3成等差數(shù)列,可得一個含公比q的方程,解這個方程便得公比q,從而得數(shù)列{an}通項公式. (Ⅱ)由題設(shè)及(I)可得:bn=anlog2an=-n?()n,由等差數(shù)列與等比數(shù)列的積或商構(gòu)成的新數(shù)列,求和時用錯位相消法.
試題解析:(I)設(shè)等比數(shù)列{an}的公比為q,由題知  a1=,
又∵ S1+a1,S2+a2,S3+a3成等差數(shù)列,
∴ 2(S2+a2)=S1+a1+S3+a3,
變形得S2-S1+2a2=a1+S3-S2+a3,即得3a2=a1+2a3,
q=+q2,解得q=1或q=,                   4分
又由{an}為遞減數(shù)列,于是q=
∴an=a1=()n.                            6分
(Ⅱ)由于bn=anlog2an=-n?()n,
,
于是
兩式相減得:
.                      12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列,,且滿足
(1)求證數(shù)列是等差數(shù)列;
(2)設(shè),求數(shù)列的前n項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)正數(shù)列的前項和為,且
(1)求數(shù)列的首項;
(2)求數(shù)列的通項公式;
(3)設(shè),是數(shù)列的前項和,求使得對所有都成立的最小正整數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列為等差數(shù)列,且
(1)求數(shù)列的通項公式;
(2)證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)等差數(shù)列的前項和為,已知,.
(1)求
(2)若從中抽取一個公比為的等比數(shù)列,其中,且,.
①當(dāng)取最小值時,求的通項公式;
②若關(guān)于的不等式有解,試求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列滿足,,,是數(shù)列的前項和.
(1)若數(shù)列為等差數(shù)列.
(ⅰ)求數(shù)列的通項;
(ⅱ)若數(shù)列滿足,數(shù)列滿足,試比較數(shù)列 前項和項和的大;
(2)若對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知等差數(shù)列{an}的前n項和為Sn,滿足a13S13=13,則a1=(  ).
A.-14B.-13C.-12D.-11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在等差數(shù)列中,若,則該數(shù)列的前15項的和為____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)數(shù)列{an}是公差不為零的等差數(shù)列,它的前n項和為Sn,且S1  S2、S4成等比數(shù)列,則等于(   )
A.3B.4C.6D.7

查看答案和解析>>

同步練習(xí)冊答案