設(shè)直線l的方程為(a∈R).
(1)若l在兩坐標(biāo)軸上截距相等,求l的方程;
(2)若l不經(jīng)過第二象限,求實(shí)數(shù)a的取值范圍.
(1),(2)
解析試題分析:(1) l在兩坐標(biāo)軸上截距相等,分為截距為零和不為零兩種情況.截距為零時(shí),直線過原點(diǎn);截距不為零時(shí),直線的一般式為,可得.
(2)將直線變形為,知直線必有斜率,所以當(dāng)直線不過第二象限時(shí)有兩種情況,一是,二是,即.
(1) l在兩坐標(biāo)軸上截距相等, 分為截距為零和不為零兩種情況.
當(dāng)直線在軸和軸上的截距為零時(shí),該直線過原點(diǎn),代入原點(diǎn)可得,得的方程為.
當(dāng)直線在軸和軸上的截距不為零時(shí),當(dāng)直線不經(jīng)過原點(diǎn)時(shí),直線的一般式為,可得,得的方程為.
(2)將的方程化為,
則.
綜上可知的取值范圍是.
考點(diǎn):直線的方程;直線的位置.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線l1:x+a2y+1=0和直線l2:(a2+1)x-by+3=0(a,b∈R).
(1)若l1∥l2,求b的取值范圍;
(2)若l1⊥l2,求|ab|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,射線OA、OB分別與x軸正半軸成45°和30°角,過點(diǎn)P(1,0)作直線AB分別交OA、OB于A、B兩點(diǎn),當(dāng)AB的中點(diǎn)C恰好落在直線y=x上時(shí),求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)分別為橢圓的左、右焦點(diǎn),斜率為的直線經(jīng)過右焦點(diǎn),且與橢圓W相交于兩點(diǎn).
(1)求的周長;
(2)如果為直角三角形,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的左右焦點(diǎn)分別為,短軸兩個(gè)端點(diǎn)為,且四邊形是邊長為2的正方形.
(1)求橢圓的方程;
(2)若分別是橢圓長軸的左右端點(diǎn),動(dòng)點(diǎn)滿足,連接,交橢圓于點(diǎn).證明:為定值;
(3)在(2)的條件下,試問軸上是否存在異于點(diǎn)的定點(diǎn),使得以為直徑的圓恒過直線的交點(diǎn),若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知直線的斜率為.
(Ⅰ)若直線過點(diǎn),求直線的方程;
(Ⅱ)若直線在軸、軸上的截距之和為,求直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com