14.若一個(gè)圓柱的軸截面是一個(gè)面積為16的正方形,則該圓柱的表面積是( 。
A.16πB.C.24πD.28π

分析 利用一個(gè)圓柱的軸截面是一個(gè)面積為16的正方形,可得圓柱的底面半徑為2,高為4,即可求出該圓柱的表面積.

解答 解:∵一個(gè)圓柱的軸截面是一個(gè)面積為16的正方形,
∴圓柱的底面半徑為2,高為4,
∴該圓柱的表面積是2π•22+2π•2•4=24π,
故選:C.

點(diǎn)評(píng) 本題考查圓柱的表面積,考查學(xué)生的計(jì)算能力,確定圓柱的底面半徑為2,高為4是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在Rt△ABC中,C=90°,CD⊥AB于D,則$\frac{C{D}^{4}+A{B}^{4}}{C{A}^{4}+C{B}^{4}}$的取值范圍為$(1,\frac{17}{8})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知f(x)為偶函數(shù),g(x)為奇函數(shù),且滿足f(x)+g(x)=$\frac{1}{x-1}$,則f(x)=$\frac{1}{{x}^{2}-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.計(jì)算(-3+4i)(1-2i)2(其中 i為虛數(shù)單位)的結(jié)果為(  )
A.-25B.-7C.7D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.三視圖如圖所示的幾何體的最長(zhǎng)棱的長(zhǎng)度為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)$a={log_2}3+{log_2}\sqrt{3},b={log_2}9-{log_2}\sqrt{3},c={log_{\sqrt{2}}}\sqrt{3}$,則a,b,c的大小關(guān)系是(  )
A.a=b<cB.a=b>cC.a<b<cD.a>b>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,平面四邊形ABCD中,AB=$\sqrt{3}$,AD=DC=CB=1.
(1)若∠A=60°,求cosC.
(2)若△ABD和△BCD的面積分別為S、T,求S2+T2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)y=-3sin($\frac{1}{2}$x+$\frac{π}{4}$)的周期,振幅,初相分別是( 。
A.$\frac{π}{4}$,3,$\frac{π}{4}$B.4π,-3,-$\frac{π}{4}$C.4π,3,$\frac{π}{4}$D.2π,3,$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.過原點(diǎn)的直線l與圓x2+y2-10x+24=0相交與A、B兩點(diǎn),
(Ⅰ)當(dāng)弦AB長(zhǎng)為$\sqrt{3}$時(shí),求直線l的方程.
(Ⅱ)求弦AB的中點(diǎn)M的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案