【題目】如圖, 中,,分別為,邊的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且

(1)證明:平面;

(2)求平面與平面所成銳二面角的余弦值.

【答案】(1)見(jiàn)解析;(2)

【解析】

1)由,分別為,邊的中點(diǎn),可得,由已知結(jié)合線(xiàn)面垂直的判定可得平面,從而得到平面;(2)取的中點(diǎn),連接,由已知證明平面,過(guò),分別以,所在直線(xiàn)為,軸建立空間直角坐標(biāo)系,分別求出平面與平面的一個(gè)法向量,由兩法向量所成角的余弦值可得平面與平面所成銳二面角的余弦值.

(1)因?yàn)?/span>分別為,邊的中點(diǎn),

所以,

因?yàn)?/span>

所以,

又因?yàn)?/span>,

所以平面,

所以平面

(2)取的中點(diǎn),連接,

由(1)知平面平面,

所以平面平面

因?yàn)?/span>,

所以

又因?yàn)?/span>平面,平面平面,

所以平面

過(guò),分別以,所在直線(xiàn)為軸建立空間直角坐標(biāo)系,則, ,

,

設(shè)平面的法向量為,

,

易知為平面的一個(gè)法向量,

所以平面與平面所成銳二面角的余弦值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)圖形中,正方體棱上的四個(gè)中點(diǎn)共面的圖形是( ).

A.甲與乙B.乙與丙C.丙與丁D.丁與甲

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì) n N ,設(shè)拋物線(xiàn) y2 2(2n 1) x ,過(guò) P 2n, 0 任作直線(xiàn) l 與拋物線(xiàn)交與 An, Bn兩點(diǎn),則數(shù)列的前 n 項(xiàng)和為_____;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)舉行促銷(xiāo)活動(dòng),有兩個(gè)摸獎(jiǎng)箱,箱內(nèi)有一個(gè)“”號(hào)球、兩個(gè)“”號(hào)球、三個(gè)“”號(hào)球、四個(gè)無(wú)號(hào)球,箱內(nèi)有五個(gè)“”號(hào)球、五個(gè)“”號(hào)球,每次摸獎(jiǎng)后放回,消費(fèi)額滿(mǎn)元有一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì),消費(fèi)額滿(mǎn)元有一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì),摸得有數(shù)字的球則中獎(jiǎng),“”號(hào)球獎(jiǎng)元、“”號(hào)球獎(jiǎng)元、“”號(hào)球獎(jiǎng)元,摸得無(wú)號(hào)球則沒(méi)有獎(jiǎng)金.

(Ⅰ)經(jīng)統(tǒng)計(jì),消費(fèi)額服從正態(tài)分布,某天有為顧客,請(qǐng)估計(jì)消費(fèi)額(單位:元)在區(qū)間內(nèi)并中獎(jiǎng)的人數(shù);

(Ⅱ)某三位顧客各有一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì),求其中中獎(jiǎng)人數(shù)的分布列;

(Ⅲ)某顧客消費(fèi)額為元,有兩種摸獎(jiǎng)方法,方法一:三次箱內(nèi)摸獎(jiǎng)機(jī)會(huì);方法二:一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì),請(qǐng)問(wèn):這位顧客選哪一種方法所得獎(jiǎng)金的期望值較大.

附:若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三條直線(xiàn)l1:2x-y+a=0(a>0),直線(xiàn)l2:4x-2y-1=0和直線(xiàn)l3:x+y-1=0,且l1l2的距離是.

(1)a的值.

(2)能否找到一點(diǎn)P,使得P點(diǎn)同時(shí)滿(mǎn)足下列三個(gè)條件:①P是第一象限的點(diǎn);②P點(diǎn)到l1的距離是P點(diǎn)到l2的距離的;③P點(diǎn)到l1的距離與P點(diǎn)到l3的距離之比是?若能,求出P點(diǎn)坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,將一塊直角三角形板置于平面直角坐標(biāo)系中,已知,點(diǎn)是三角板內(nèi)一點(diǎn),現(xiàn)因三角板中,陰影部分受到損壞,要把損壞部分鋸掉,可用經(jīng)過(guò)點(diǎn)的任一直線(xiàn)將三角板鋸成,設(shè)直線(xiàn)的斜率為.

1)用表示出直線(xiàn)的方程,并求出點(diǎn)的坐標(biāo);

2)求出的取值范圍及其所對(duì)應(yīng)的傾斜角的范圍;

3)求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是雙曲線(xiàn)的左右焦點(diǎn),其漸近線(xiàn)為,且其右焦點(diǎn)與拋物線(xiàn)的焦點(diǎn)重合.

1)求雙曲線(xiàn)的方程;

2)過(guò)的直線(xiàn)相交于兩點(diǎn),直線(xiàn)的法向量為,且,求的值

3)在(2)的條件下,若雙曲線(xiàn)在第四象限的部分存在一點(diǎn)滿(mǎn)足,求的值及的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)生產(chǎn)公司投資A生產(chǎn)線(xiàn)500萬(wàn)元,每萬(wàn)元可創(chuàng)造利潤(rùn)萬(wàn)元,該公司通過(guò)引進(jìn)先進(jìn)技術(shù),在生產(chǎn)線(xiàn)A投資減少了x萬(wàn)元,且每萬(wàn)元的利潤(rùn)提高了;若將少用的x萬(wàn)元全部投入B生產(chǎn)線(xiàn),每萬(wàn)元?jiǎng)?chuàng)造的利潤(rùn)為萬(wàn)元,其中

若技術(shù)改進(jìn)后A生產(chǎn)線(xiàn)的利潤(rùn)不低于原來(lái)A生產(chǎn)線(xiàn)的利潤(rùn),求x的取值范圍;

若生產(chǎn)線(xiàn)B的利潤(rùn)始終不高于技術(shù)改進(jìn)后生產(chǎn)線(xiàn)A的利潤(rùn),求a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的值域?yàn)?/span>,記函數(shù).

1)求實(shí)數(shù)的值;

2)存在使得不等式成立,求實(shí)數(shù)的取值范圍;

3)若關(guān)于的方程5個(gè)不等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案