函數(shù)的單調(diào)遞減區(qū)間是__▲_
(2,+∞)
此題考察復(fù)合函數(shù)的單調(diào)性
思路分析:設(shè),則在其定義域上單調(diào)減,根據(jù)復(fù)合函數(shù)單調(diào)性判定知,要使減,則需滿足,必須增,而時(shí),增時(shí),;故.所以原函數(shù)的單調(diào)減區(qū)間是.
點(diǎn)評(píng):注意復(fù)合函數(shù)單調(diào)性的判定,根據(jù)“同增異減”判斷.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,當(dāng)時(shí),的值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823193311746199.gif" style="vertical-align:middle;" />且.
(1)若的最小值;
(2)若的值;
(3)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若偶函數(shù)上是減函數(shù),則下列關(guān)系式中成立的是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(本小題滿分12分)
已知函數(shù) . (1) 求函數(shù)的定義域;(2) 求證上是減函數(shù);(3) 求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)
設(shè)函數(shù).
(1)求證:不論為何實(shí)數(shù)總為增函數(shù);
(2)確定的值,使為奇函數(shù)及此時(shí)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)()的最小值是 (  )
A.1B.2 C.5 D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195435534315.png" style="vertical-align:middle;" />,若存在非零常數(shù)使得對(duì)于任意,則稱上的高調(diào)函數(shù).對(duì)于定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823195435722303.png" style="vertical-align:middle;" />的奇函數(shù),當(dāng),若上的4高調(diào)函數(shù),則實(shí)數(shù)的取值范圍為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知是定義在上的增函數(shù),且,則的取值范圍為           

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求函數(shù)在區(qū)間[2,6]上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案