已知函數(shù)f(x)滿足f(logax)=
a(x2-1)
x(a2-1)
,(其中a>0且a≠1)
(1)求f(x)的解析式及其定義域;
(2)在函數(shù)y=f(x)的圖象上是否存在兩個不同的點,使過兩點的直線與x軸平行,如果存在,求出兩點;如果不存在,說明理由.
(1)設(shè)t=logax,則x=at,t∈R
∴f(t)=
a(a2t-1)
at(a2-1)
=
a
a2-1
×
a2t-1
at
=
a
a2-1
(at-a-t)(t∈R)

f(x)=
a
a2-1
(ax-a-x)(x∈R)
,定義域為R
(2)不存在,理由如下:
設(shè)x1,x2∈R且x1<x2
f(x1)-f(x2)=
a
a2-1
(ax1-a-x1-ax2+a-x2)

=
a
a2-1
(ax1-ax2+
ax1-ax2
ax1+x2
)

=
a(ax1-ax2)(ax1+x2+1)
(a2-1)ax1+x2

ax1+x2+1>0,ax1+x2>0,而不論a>1還是0<a<1ax1-ax2與a2-1同號
∴f(x1)-f(x2)<0,即f(x1)<f(x2
∴f(x)在R上是增函數(shù).
故在函數(shù)y=f(x)的圖象上不存在兩個不同的點,使過兩點的直線與x軸平行.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知0<a<1,logam<logan<0,則m,n與1的大小關(guān)系______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)y=loga(x+4)-2(a>0,a≠1)的圖象恒過定點A,若點A在直線mx+ny+1=0上,其中mn>0,則
1
m
+
1
n
的最小值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知log8[log2(log3x)]=0,那么(
1
x
)
1
2
等于(  )
A.
1
2
3
B.
1
2
2
C.
1
3
D.
1
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知a=log60.2,b=60.2,c=0.26,則a,b,c由小到大的順序是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)y=x+a與函數(shù)y=logax的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在函數(shù)f(x)=lgx的圖象上有三點A、B、C,橫坐標(biāo)依次是m-1,m,m+1(m>2).
(1)試比較f(m-1)+f(m+1)與2f(m)的大;
(2)求△ABC的面積S=g(m)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知a>0且a≠1,若函數(shù)f(x)=logα(x+
x2+k
)
在(-∞,+∞)上既是奇函數(shù),又是增函數(shù),則函數(shù)g(x)=logα|x-k|的圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知f(x)=x2+ax+3-a,若當(dāng)x∈[-2,2]時,f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案