【題目】已知橢圓的離心率為,橢圓的左焦點(diǎn)為,橢圓上任意點(diǎn)到的最遠(yuǎn)距離是,過直線與軸的交點(diǎn)任作一條斜率不為零的直線與橢圓交于不同的兩點(diǎn)、,點(diǎn)關(guān)于軸的對稱點(diǎn)為.
(1)求橢圓的方程;
(2)求證:、、三點(diǎn)共線;
(3)求面積的最大值.
【答案】(Ⅰ);(Ⅱ)證明見解析;(Ⅲ).
【解析】
(Ⅰ)由題意得到關(guān)于a,b,c的方程組,求得a,b的值即可確定橢圓方程;
(Ⅱ)設(shè)直線的方程為,聯(lián)立直線方程與橢圓方程,結(jié)合韋達(dá)定理證明即可證得題中的結(jié)論.
(Ⅲ)由題意可得的面積,結(jié)合均值不等式的結(jié)論確定面積的最大值即可.
(Ⅰ)由題意可得:,解得:,
故橢圓的離心率為:.
(Ⅱ)結(jié)合(Ⅰ)中的橢圓方程可得:,故,
設(shè)直線的方程為,
聯(lián)立直線方程與橢圓方程:可得:
.
直線與橢圓相交,則:,
解得:或.
設(shè),,
則:,
故:
將代入上式可得:,
故三點(diǎn)共線;
(Ⅲ)結(jié)合(Ⅱ)中的結(jié)論可得:
的面積
.
當(dāng)且僅當(dāng)時等號成立,故的面積的最大值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:極坐標(biāo)與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).
(1)求曲線的普通方程;
(2)經(jīng)過點(diǎn)(平面直角坐標(biāo)系中點(diǎn))作直線交曲線于, 兩點(diǎn),若恰好為線段的三等分點(diǎn),求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,點(diǎn)O是對角線AC與BD的交點(diǎn),AB=2,∠BAD=60°,M是PD的中點(diǎn).
(Ⅰ)求證:OM∥平面PAB;
(Ⅱ)平面PBD⊥平面PAC;
(Ⅲ)當(dāng)三棱錐C﹣PBD的體積等于 時,求PA的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前n項(xiàng)和, 是等差數(shù)列,且.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令.求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若曲線在點(diǎn)處的切線與曲線切于點(diǎn),求的值;
(Ⅲ)若恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】美國制裁中興,未來7年一顆芯片都不賣,這卻激發(fā)了中國“芯”的研究熱潮.某公司甲,乙,丙三個研發(fā)小組分別研發(fā),,三種不同的芯片,現(xiàn)在用分層抽樣的方法從這些芯片中抽取若干件進(jìn)行質(zhì)量分析,有關(guān)數(shù)據(jù)見下表(單位:件).
芯片 | 數(shù)量 | 抽取件數(shù) |
200 | ||
600 | ||
400 | 2 |
(Ⅰ)求的值;
(Ⅱ)若在這抽出的樣品中隨機(jī)抽取2件送往某機(jī)構(gòu)進(jìn)行進(jìn)一步檢測,求這2件芯片來自不同種類的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,E、F分別為PC、BD的中點(diǎn),側(cè)面PAD⊥底面ABCD.
(1)求證:EF∥平面PAD;
(2)若EF⊥PC,求證:平面PAB⊥平面PCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方形的邊長為4,,分別為,的中點(diǎn),以為棱將正方形折成如圖所示的的二面角,點(diǎn)在線段上且不與點(diǎn),重合,直線與由,,三點(diǎn)所確定的平面相交,交點(diǎn)為.
(1)若為的中點(diǎn),試確定點(diǎn)的位置,并證明直線平面;
(2)若,求的長度,并求此時點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知是橢圓上的一點(diǎn),從原點(diǎn)向
圓作兩條切線,分別交橢圓于點(diǎn).
(1)若點(diǎn)在第一象限,且直線互相垂直,求圓的方程;
(2)若直線的斜率存在,并記為,求的值;
(3)試問是否為定值?若是,求出該值;若不是,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com