(本小題滿分12分)(注意:在試題卷上作答無效)為贏得2010年上海世博會的制高點,某公司最近進行了世博特許產(chǎn)品的市場分析,調(diào)查顯示,該產(chǎn)品每件成本9元,售價為30元,每天能賣出432件,該公司可以根據(jù)情況可變化價格)元出售產(chǎn)品;若降低價格,則銷售量增加,且每天多賣出的產(chǎn)品件數(shù)與商品單價的降低值的平方成正比,已知商品單價降低2元時,每天多賣出24件;若提高價格,則銷售減少,減少的件數(shù)與提高價格成正比,每提價1元則每天少賣8件,且僅在提價銷售時每件產(chǎn)品被世博管委會加收1元的管理費。

(Ⅰ)試將每天的銷售利潤表示為價格變化值的函數(shù);

(Ⅱ)試問如何定價才能使產(chǎn)品銷售利潤最大?

 

【答案】

(Ⅰ)

(Ⅱ)當定價18元時,銷售額最大。

【解析】解:(1)當降價時,則多賣產(chǎn)品,由已知得:,

     所以…………3分

 當提價時,,…………2分

   所以………………………6分

(2)當降價銷售時,,

,

所以有

+

+

極大值

極小值

處取得唯一極大值,∴,…9分

當提價銷售時,

…………………11分

所以當定價18元時,銷售額最大!12分

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案