【題目】已知函數(shù),函數(shù).
(1)若曲線與曲線在它們的交點處有公共切線,求的值;
(2)若存在實數(shù)使不等式的解集為,求實數(shù)的取值范圍.
【答案】(1) 5或﹣27;(2).
【解析】
(1)設(shè)出切點坐標(biāo),利用切點處導(dǎo)函數(shù)值等于切線斜率且切點為兩個函數(shù)交點,列出方程組,解出切點坐標(biāo)和的值.
(2)構(gòu)造函數(shù),把不等式轉(zhuǎn)化為的圖象在直線的下方的部分對應(yīng)點的橫坐標(biāo),利用導(dǎo)數(shù)分析出函數(shù)的單調(diào)區(qū)間和極值,畫出函數(shù)圖象,數(shù)形結(jié)合得到符合題意的的取值范圍.
解:(1),,
設(shè)與的交點坐標(biāo)為,,則,
解得:或,
的值為5或;
(2)令,則的圖象在直線的下方的部分對應(yīng)點的橫坐標(biāo),
,令,得:或3,
列表:
| 3 | ||||
0 | 0 | ||||
增 | 極大值 | 減 | 極小值 | 增 |
的極大值為,極小值為(3),
又當(dāng)時,,當(dāng)時,,
如圖所示:
當(dāng)或時,滿足題意,
實數(shù)的取值范圍為: .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列的前項和為,且.
(1)求數(shù)列的通項公式;
(2)設(shè),若對一切正整數(shù),不等式恒成立,求實數(shù)的取值范圍;.
(3)是否存在正整數(shù),使得。成等比數(shù)列?若存在,求出所有的;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海洋藍(lán)洞是地球罕見的自然地理現(xiàn)象,被喻為“地球留給人類保留宇宙秘密的最后遺產(chǎn)”,我國擁有世界上最深的海洋藍(lán)洞,若要測量如圖所示的藍(lán)洞的口徑,兩點間的距離,現(xiàn)在珊瑚群島上取兩點,,測得,,,,則,兩點的距離為___.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體中,.
(1)求證:平面ABCD;
(2)若,點F在EC上,且滿足EF=2FC,求二面角F—AD—C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點分別為,長軸長為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程及離心率;
(Ⅱ)過點的直線與橢圓交于,兩點,若點滿足,求證:由點 構(gòu)成的曲線關(guān)于直線對稱.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間與極值.
(2)當(dāng)時,是否存在,使得成立?若存在,求實數(shù)的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列為首項是4,公差為1的等差數(shù)列,為數(shù)列的前項和,且。
(1)求數(shù)列及的通項公式和;
(2)問是否存在使成立?若存在,求出,若不存在,說明理由;
(3)對任意的正數(shù),不等式恒成立,求正數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)y=f(x),x∈D,若存在閉區(qū)間[a,b]和常數(shù)C,使得對任意x∈[a,b]都有f(x)=C,稱f(x)為“橋函數(shù)”.
(1)作出函數(shù)的圖象,并說明f(x)是否為“橋函數(shù)”?(不必證明)
(2)設(shè)f(x)定義域為R,判斷“f(x)為奇函數(shù)”是“為’橋函數(shù)’”的什么條件?給出你的結(jié)論并說明理由;
(3)若函數(shù)是“橋函數(shù)”,求常數(shù)m、n的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com