分析 將分式不等式右邊化零、并因式分解后,進(jìn)行等價(jià)轉(zhuǎn)化,由穿根法求出不等式的解集.
解答 解:由$\frac{3x-4}{{x}^{2}+2x}>\frac{1}{4}$得$\frac{3x-4}{{x}^{2}+2x}-\frac{1}{4}>0$,
化簡得$\frac{{x}^{2}-10x+16}{{4(x}^{2}+2x)}<0$,即$\frac{(x-2)(x-8)}{4x(x+2)}<0$,
等價(jià)于(x-2)(x-8)x(x+2)<0,如圖所示:
由圖可得,不等式的解集是(-2,0)∪(2,8),
∴不等式所有解集區(qū)間的長度和是2+6=8,
故答案為:8.
點(diǎn)評 本題考查分式不等式的化簡、及等價(jià)轉(zhuǎn)化,以及穿根法的應(yīng)用,考查轉(zhuǎn)化思想,數(shù)形結(jié)合思想,化簡、變形能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{5}$ | B. | $\sqrt{2}$ | C. | $\sqrt{5}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ${log_{\frac{1}{3}}}5$ | B. | 5 | C. | -5 | D. | ${({\frac{1}{3}})^5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $16\sqrt{3}$ | B. | $\frac{{16\sqrt{3}}}{3}$ | C. | $9\sqrt{3}$ | D. | $3\sqrt{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com