(2013•宜賓一模)已知曲線y=
1
8
x2
的一條切線的斜率為
1
2
,則切點的縱坐標(biāo)為( 。
分析:求導(dǎo)函數(shù),利用曲線y=
1
8
x2
的一條切線的斜率為
1
2
,求得切點的橫坐標(biāo),從而可得切點的縱坐標(biāo)
解答:解:求導(dǎo)函數(shù),可得y′=
1
4
x

1
4
x=
1
2
,則x=2
x=2時,y=
1
8
x2=
1
2

故選A.
點評:本題考查導(dǎo)數(shù)知識的運用,考查導(dǎo)數(shù)的幾何意義,考查學(xué)生的計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•宜賓一模)設(shè)函數(shù)f(x)=1-ex的圖象與x軸相交于點P,則曲線在點P的切線方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•宜賓一模)復(fù)數(shù)z=
3+4i
1+2i
在復(fù)平面內(nèi)對應(yīng)的點位于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•宜賓一模)設(shè)Sn為等比數(shù)列{an}的前n項和,27a2+a5=0,則
S5
S2
的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•宜賓一模)已知函數(shù)f(x)=sin(
π
2
-x)cosx-sinx•cos(π+x).
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)在△ABC中,若A為銳角,且f(A)=1,BC=2,B=
π
3
,求AC邊的長.

查看答案和解析>>

同步練習(xí)冊答案