已知
a
=(1,3),
b
=(m,2m-3),平面上任意向量
c
都可以唯一地表示為
c
a
b
(λ,μ∈R),則實數(shù)m的取值范圍是(  )
A、(-∞,0)∪(0,+∞)
B、(-∞,3)
C、(-∞,-3)∪(-3,+∞)
D、[-3,3)
考點:平面向量的基本定理及其意義
專題:平面向量及應用
分析:首先,根據(jù)題意,得向量
a
,
b
不共線,然后,根據(jù)坐標運算求解實數(shù)m的取值范圍.
解答: 解:根據(jù)平面向量基本定理,得
向量
a
,
b
不共線,
a
=(1,3),
b
=(m,2m-3),
∴2m-3-3m≠0,
∴m≠-3.
故選:C.
點評:本題重點考查了向量的共線的條件、坐標運算等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1(a,b>0)的左、右焦點分別為F1、F2,過焦點F2且垂直于x軸的弦為AB,∠AF1B=60°,則雙曲線的離心率為( 。
A、
2
B、
2
+1
C、
3
D、
3
+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知i為虛數(shù)單位,則復數(shù)z=i(2+i)在復平面內(nèi)對應的點位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是定義在R上且周期為2的函數(shù),在區(qū)間[-1,1]上,f(x)=
ax+1,-1≤x<0
bx+2
x+1
,0≤x≤1
,其中a,b∈R,若f(
1
2
)=f(
3
2
),則a+3b=( 。
A、2B、-2C、10D、-10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若復數(shù)(m2-1)+(m+1)i為實數(shù)(i為虛數(shù)單位),則實數(shù)m的值為( 。
A、-1B、0C、1D、-1或1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若偶函數(shù)f(x)在區(qū)間(-∞,0]上單調(diào)遞增,則滿足f(2x-1)>f(
1
3
)的x的取值范圍是( 。
A、(
1
3
,
2
3
B、[
1
3
2
3
C、(
1
2
,
2
3
D、[
1
2
,
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x∈[-
π
12
,
π
3
],則函數(shù)y=sin4x-cos4x的最小值是( 。
A、-1
B、-
3
2
C、
1
2
D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=(
1
2014
x-log2014x,實數(shù)a、b、c滿足f(a)f(b)f(c)<0,且0<a<b<c,若實數(shù)x0是函數(shù)f(x)的一個零點,則下列不等式中,不可能成立的是( 。
A、x0<a
B、x0>b
C、x0<c
D、x0>c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a(x2+1)+lnx.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若對任意a∈(-4,-2)及x∈[1,3]時,恒有ma-f(x)>a2成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案