【題目】如圖所示,在平面直角坐標(biāo)系中,已知橢圓:(),,,,是橢圓上的四個(gè)動(dòng)點(diǎn),且,,線段與交于橢圓內(nèi)一點(diǎn).當(dāng)點(diǎn)的坐標(biāo)為,且,分別為橢圓的上頂點(diǎn)和右頂點(diǎn)重合時(shí),四邊形的面積為4.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)證明:當(dāng)點(diǎn),,,在橢圓上運(yùn)動(dòng)時(shí),()是定值.
【答案】(Ⅰ);(Ⅱ)是定值
【解析】
【試題分析】(1)依據(jù)題設(shè)條件建立方程組,然后解方程組求出,;(2)先設(shè)四點(diǎn)坐標(biāo)分別為,,,,然后將點(diǎn),的坐標(biāo)代入橢圓方程得:,.再兩式相減得:,求得,進(jìn)而得到,①
將點(diǎn),的坐標(biāo)代入橢圓方程,同理可得:,最后設(shè)(),得,即,即,,②。再設(shè),同理可得:,,③。由①②③得: ,
整理得: ,進(jìn)而得到,從而求出。
解:(Ⅰ)由題可知:,解得,,
所以橢圓的標(biāo)準(zhǔn)方程.
(Ⅱ)設(shè),,,,
將點(diǎn),的坐標(biāo)代入橢圓方程得:,.
兩式相減得:,
∵,∴,①
將點(diǎn),的坐標(biāo)代入橢圓方程,同理可得:,
設(shè)(),得,
即,即,,②
設(shè),同理可得:,,③
由①②③得: ,
整理得: ,
即,
∵,,∴,
所以是定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若的定義域,值域都是,求的值;
(2)當(dāng)時(shí),討論在區(qū)間上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的左頂點(diǎn)為,右頂點(diǎn)為.已知橢圓的離心率為,且以線段為直徑的圓被直線所截得的弦長(zhǎng)為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)過(guò)點(diǎn)的直線與橢圓交于點(diǎn),且點(diǎn)在第一象限,點(diǎn)關(guān)于軸對(duì)稱點(diǎn)為點(diǎn),直線與直線交于點(diǎn),若直線斜率大于,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,已知點(diǎn),,直線將分成兩部分,記左側(cè)部分的多邊形為.設(shè)各邊長(zhǎng)的平方和為,各邊長(zhǎng)的倒數(shù)和為.
(Ⅰ) 分別求函數(shù)和的解析式;
(Ⅱ)是否存在區(qū)間,使得函數(shù)和在該區(qū)間上均單調(diào)遞減?若存在,求 的最大值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)周年慶,準(zhǔn)備提供一筆資金,對(duì)消費(fèi)滿一定金額的顧客以參與活動(dòng)的方式進(jìn)行獎(jiǎng)勵(lì).顧客從一個(gè)裝有大小相同的2個(gè)紅球和4個(gè)黃球的袋中按指定規(guī)則取出2個(gè)球,根據(jù)取到的紅球數(shù)確定獎(jiǎng)勵(lì)金額,具體金額設(shè)置如下表:
取到的紅球數(shù) | 0 | 1 | 2 |
獎(jiǎng)勵(lì)(單位:元) | 5 | 10 | 50 |
現(xiàn)有兩種取球規(guī)則的方案:
方案一:一次性隨機(jī)取出2個(gè)球;
方案二:依次有放回取出2個(gè)球.
(Ⅰ)比較兩種方案下,一次抽獎(jiǎng)獲得50元獎(jiǎng)金概率的大;
(Ⅱ)為使得盡可能多的人參與活動(dòng),作為公司的負(fù)責(zé),你會(huì)選擇哪種方案?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若不等式的解集為,求實(shí)數(shù)的值;
(2)在(1)的條件下,若存在實(shí)數(shù)使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法錯(cuò)誤的是( )
A.在回歸分析中,相關(guān)指數(shù)越大,說(shuō)明殘差平方和越小,回歸效果越好
B.線性回歸方程對(duì)應(yīng)的直線至少經(jīng)過(guò)其樣本數(shù)據(jù)點(diǎn)中的一個(gè)點(diǎn)
C.在線性回歸分析中,相關(guān)系數(shù)為,越接近于1,相關(guān)程度越大
D.在回歸直線中,變量每增加一個(gè)單位,變量大約增加0.5個(gè)單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為, ,離心率為,且過(guò)點(diǎn).
()求橢圓的標(biāo)準(zhǔn)方程.
()、、、是橢圓上的四個(gè)不同的點(diǎn),兩條都不和軸垂直的直線和分別過(guò)點(diǎn), ,且這條直線互相垂直,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)試確定在上的單調(diào)性;
(2)若,函數(shù)在(0,2)上有極值,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com