【題目】上周某校高三年級學生參加了數(shù)學測試,年部組織任課教師對這次考試進行成績分析.現(xiàn)從中隨機選取了40名學生的成績作為樣本,已知這40名學生的成績?nèi)吭?0分至100分之間(滿分100分,成績不低于40分),現(xiàn)將成績按如下方式分成6組:第一組;第二組;……;第六組,并據(jù)此繪制了如圖所示的頻率分布直方圖.

(Ⅰ)估計這次月考數(shù)學成績的平均分和眾數(shù);

(Ⅱ)從成績大于等于80分的學生中隨機選2名,求至少有1名學生的成績在區(qū)間內(nèi)的概率.

【答案】(1)65分(2)

【解析】試題分析:(1)個矩形中點橫坐標與縱坐標的積求和即可求平均數(shù),最高矩形中點橫坐標即為眾數(shù);(2)用列舉法求出從成績大于等于分的學生中隨機選名學生的事件個數(shù),查出至少有名學生成績在的事件個數(shù),然后直接利用古典概型概率計算公式求解.

試題解析:(1)因各組的頻率之和為1,所以成績在區(qū)間內(nèi)的頻率為

,

所以平均分 分,

眾數(shù)的估計值是65分

(2)設表示事件“在成績大于等于80分的學生中隨機選2名,至少有1名學生的成績在區(qū)間內(nèi)”,由題意可知成績在區(qū)間內(nèi)的學生所選取的有: ,記這4名學生分別為, , ,

成績在區(qū)間內(nèi)的學生有(人),記這2名學生分別為 ,

則從這6人中任選2人的基本事件事件空間為:

共15種,

事件“至少有1名學生的成績在區(qū)間內(nèi)”的可能結(jié)果為:

,共九種,

所以.

故所求事件的概率為: .

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)).它與曲線交于兩點.

(1)求的長;

(2)在以為極點, 軸的正半軸為極軸建立極坐標系,設點的極坐標為,求點到線段中點的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,底面為平行四邊形, , , .

(Ⅰ)證明: 平面;

(Ⅱ)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,直線是函數(shù)圖象的一條對稱軸.

(1)求的值,并求的解析式;

(2)若關(guān)于的方程在區(qū)間上有且只有一個實數(shù)解,求實數(shù)的取值范圍;

(3)已知函數(shù)的圖象是由圖象上的所有點的橫坐標伸長到原來的2倍,然后再向左平移個單位得到,若, ,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線過點,其傾斜角為,以原點為極點,以正半軸為極軸建立極坐標,并使得它與直角坐標系有相同的長度單位,圓的極坐標方程為.

(1)求直線的參數(shù)方程和圓的普通方程;

(2)設圓與直線交于點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)處取得極值,求實數(shù)的值;

(2)若函數(shù))在區(qū)間上為增函數(shù),求實數(shù)的取值范圍;

(3)若當時,方程有實數(shù)根,求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) , )的一系列對應最值如表:

(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)的解析式;

(2)求函數(shù)的單調(diào)遞增區(qū)間和對稱軸;

(3)若當時,方程恰有兩個不同的解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)當時,求曲線在點處的切線方程;

(2)討論函數(shù)的單調(diào)性并判斷有無極值,有極值時求出極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是某直三棱柱(側(cè)棱與底面垂直的三棱柱)被削去上底后的直觀圖與三視圖中的側(cè)視圖、俯視圖,在直觀圖中, 的中點,側(cè)視圖是直角梯形,俯視圖是等腰直角三角形,有關(guān)數(shù)據(jù)如圖所示.

(1)求出該幾何體的體積;

(2)若的中點,求證: 平面;

查看答案和解析>>

同步練習冊答案