【題目】如圖,在四棱錐中,底面為菱形,底面,,為棱的中點(diǎn),為棱的動(dòng)點(diǎn).

1)求證:平面;

2)若二面角的余弦值為,求點(diǎn)的位置.

【答案】1)證明見(jiàn)解析;(2)點(diǎn)為線(xiàn)段的中點(diǎn).

【解析】

1)分析出是等邊三角形,由三線(xiàn)合一得出,由,由,由底面,可得出,然后利用直線(xiàn)與平面垂直的判定定理可得出平面;

2)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線(xiàn)分別為、軸建立空間直角坐標(biāo)系,設(shè),計(jì)算出平面和平面的法向量、,由計(jì)算出實(shí)數(shù)的值,即可確定點(diǎn)的位置.

1)如下圖所示,由于四邊形是菱形,則,

,是等邊三角形,的中點(diǎn),,

,.

底面,平面,

,平面,平面;

2)由(1)知,,且底面,以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線(xiàn)分別為、軸建立空間直角坐標(biāo)系

則點(diǎn)、、,設(shè)

,,

設(shè)平面的一個(gè)法向量為,

,即,得,

,則,,則平面的一個(gè)法向量為.

同理可得平面的一個(gè)法向量為,

由題意可得,解得.

因此,當(dāng)點(diǎn)為線(xiàn)段的中點(diǎn)時(shí),二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-4:極坐標(biāo)與參數(shù)方程]

在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.

(1)求曲線(xiàn)的極坐標(biāo)方程和曲線(xiàn)的直角坐標(biāo)方程;

(2)若射線(xiàn) 與曲線(xiàn)交于,兩點(diǎn),與曲線(xiàn)交于,兩點(diǎn),求取最大值時(shí)的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】食品安全問(wèn)題越來(lái)越引起人們的重視,農(nóng)藥、化肥的濫用對(duì)人民群眾的健康帶來(lái)一定的危害,為了給消費(fèi)者帶來(lái)放心的蔬菜,某農(nóng)村合作社每年投入200萬(wàn)元,搭建了甲、乙兩個(gè)無(wú)公害蔬菜大棚,每個(gè)大棚至少要投入20萬(wàn)元,其中甲大棚種西紅柿,乙大棚種黃瓜,根據(jù)以往的種菜經(jīng)驗(yàn),發(fā)現(xiàn)種西紅柿的年收入種黃瓜的年收入與投入(單位:萬(wàn)元)滿(mǎn)足.設(shè)甲大棚的投入為(單位:萬(wàn)元),每年兩個(gè)大棚的總收益為(單位:萬(wàn)元)

1)求的值;

2)試問(wèn)如何安排甲、乙兩個(gè)大棚的投入,才能使總收益最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若函數(shù)的圖象在點(diǎn)處的切線(xiàn)的傾斜角為,求上的最小值;

2)若存在,使,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),試判斷函數(shù)的極值情況,并說(shuō)明理由;

2)若有兩個(gè)極值點(diǎn),.

①求實(shí)數(shù)的取值范圍;

②證明:.注:是自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,以橢圓的上焦點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線(xiàn)截得的弦長(zhǎng)為.

(1)求橢圓的方程;

(2)過(guò)橢圓左頂點(diǎn)做兩條互相垂直的直線(xiàn),,且分別交橢圓于兩點(diǎn)(,不是橢圓的頂點(diǎn)),探究直線(xiàn)是否過(guò)定點(diǎn),若過(guò)定點(diǎn)則求出定點(diǎn)坐標(biāo),否則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓,是橢圓與軸的兩個(gè)交點(diǎn),為橢圓C的上頂點(diǎn),設(shè)直線(xiàn)的斜率為,直線(xiàn)的斜率為,

(1)求橢圓的離心率;

(2)設(shè)直線(xiàn)與軸交于點(diǎn),交橢圓于、兩點(diǎn),且滿(mǎn)足,當(dāng)的面積最大時(shí),求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】提高過(guò)江大橋的車(chē)輛通行能力可改善整個(gè)城市的交通狀況,在一般情況下,大橋上的車(chē)流速度v(單位:千米/小時(shí))是車(chē)流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車(chē)流密度達(dá)到200/千米時(shí),造成堵塞,此時(shí)車(chē)流速度為0;當(dāng)車(chē)流密度不超過(guò)20/千米時(shí),車(chē)流速度為60千米/小時(shí),研究表明:當(dāng)20≤x≤200時(shí),車(chē)流速度v是車(chē)流密度x的一次函數(shù).

1)當(dāng)0≤x≤200時(shí),求函數(shù)vx)的表達(dá)式;

2)當(dāng)車(chē)流密度x為多大時(shí),車(chē)流量(單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車(chē)輛數(shù),單位:輛/小時(shí))fx=xvx)可以達(dá)到最大,并求出最大值.(精確到1/小時(shí)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列4個(gè)命題:

①函數(shù)的最小正周期是;②直線(xiàn)是函數(shù)的一條對(duì)稱(chēng)軸;③若,且為第二象限角,則;④函數(shù)在區(qū)間上單調(diào)遞減.其中正確的是__________。(寫(xiě)出所有正確命題的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案