8.已知復(fù)數(shù)z,滿足z(2-i)=2+4i,則復(fù)數(shù)z等于( 。
A.2iB.-2iC.2+iD.-2+i

分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義即可得出.

解答 解:z(2-i)=2+4i,
∴z(2-i)=-2i2+4i=2i(2-i),
∴z=2i,
故選:A.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=cosx-8cos4$\frac{x}{4}$.
(Ⅰ)求該函數(shù)的最小正周期;
(Ⅱ)求函數(shù)y=f(2x-$\frac{π}{6}$)在x∈[-$\frac{π}{6}$,$\frac{π}{4}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知${x_0}=\frac{π}{3}$是函數(shù)f(x)=msinωx-cosωx(m>0)的一條對(duì)稱軸,且f(x)的最小正周期為π
(Ⅰ)求m值和f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)角A,B,C為△ABC的三個(gè)內(nèi)角,對(duì)應(yīng)邊分別為a,b,c,若f(B)=2,$b=\sqrt{3}$,求$a-\frac{c}{2}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若雙曲線M:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦點(diǎn)分別是F1,F(xiàn)2,P為雙曲線M上一點(diǎn),且|PF1|=15,|PF2|=7,|F1F2|=10,則雙曲線M的離心率為( 。
A.$\frac{5}{4}$B.$\frac{5}{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,asinA+bsinB-csinC=asinB.
(Ⅰ)求角C的大小;
(Ⅱ)若D為AB中點(diǎn),CD=1,延長(zhǎng)CD到E,使CD=DE,設(shè)∠ACD=α,將四邊形AEBC的面積S用α表示,并求S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)f(x)=x3-(a-1)x2+(a-3)x的導(dǎo)函數(shù)f'(x)是偶函數(shù),則實(shí)數(shù)a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)集合M={x|2x-1<1,x∈R},N={x|log2x<1,x∈R},則M∩N等于( 。
A.[3,4)B.(2,3]C.(1,2)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=ex-alnx-a.
(Ⅰ)當(dāng)a=e時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)證明:對(duì)于?a∈(0,e),f(x)在區(qū)間$(\frac{a}{e},1)$上有極小值,且極小值大于0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知命題p:函數(shù)f(x)=$\frac{{{{2017}^x}-1}}{{{{2017}^x}+1}}$是奇函數(shù),命題q:函數(shù)g(x)=x3-x2在區(qū)間(0,+∞)上單調(diào)遞增.則下列命題中為真命題的是( 。
A.p∨qB.p∧qC.¬p∧qD.¬p∨q

查看答案和解析>>

同步練習(xí)冊(cè)答案