【題目】已知橢圓 =1(a>b>0)經(jīng)過(guò)點(diǎn)P(﹣2,0)與點(diǎn)(1,1).
(1)求橢圓的方程;
(2)過(guò)P點(diǎn)作兩條互相垂直的直線PA,PB,交橢圓于A,B.
①證明直線AB經(jīng)過(guò)定點(diǎn);
②求△ABP面積的最大值.

【答案】
(1)解:由題意可得 ,解得 ,

∴橢圓方程為


(2)①證明:由對(duì)稱性知,若存在定點(diǎn),則必在x軸上,

當(dāng)kPA=1時(shí),lPA:y=x+2,

聯(lián)立 ,得x2+3x+2=0,解得x=﹣1.

下面驗(yàn)證定點(diǎn)為(1,0).

設(shè)直線PA的方程為y=k(x+2),

聯(lián)立 ,得(1+3k2)x2+12k2x+12k2﹣4=0,

解得:

同理可得:

,即直線AB經(jīng)過(guò)定點(diǎn)(﹣1,0);

②解:由題意可知,直線不與x軸平行,設(shè)直線AB方程為x=ty﹣1.

聯(lián)立 ,得(t2+3)y2﹣2ty﹣3=0.

,

=

,λ∈[3,+∞),則

當(dāng)且僅當(dāng)λ=3,即t=0時(shí)成立


【解析】(1)把已知點(diǎn)的坐標(biāo)代入橢圓方程,求解方程組可得a,b,則橢圓的方程可求;(2)①由對(duì)稱性知,若存在定點(diǎn),則必在x軸上,求出PA所在直線斜率為1時(shí)AB所過(guò)定點(diǎn),驗(yàn)證得答案;②設(shè)直線AB方程為x=ty﹣1.聯(lián)立直線方程和橢圓方程,化為關(guān)于y的一元二次方程,利用根與系數(shù)的關(guān)系求得A,B的縱坐標(biāo)的和與積,結(jié)合弦長(zhǎng)公式求得面積,換元后利用基本不等式求最值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解橢圓的標(biāo)準(zhǔn)方程的相關(guān)知識(shí),掌握橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=alnx+x2+bx+1在點(diǎn)(1,f(1))處的切線方程為4x﹣y﹣12=0.
(1)求函數(shù)f(x)的解析式;
(2)求f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,圓C的普通方程為在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為寫(xiě)出圓C的參數(shù)方程和直線l的直角坐標(biāo)方程;設(shè)直線lx軸和y軸的交點(diǎn)分別為AB,P為圓C上的任意一點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l極坐標(biāo)方程ρcosθ﹣ρsinθ+3=0,圓M的極坐標(biāo)方程為ρ=4sinθ.以極點(diǎn)為原點(diǎn),極軸為x軸建立直角坐標(biāo)系(1)寫(xiě)出直線l與圓M的直角標(biāo)方程;

(2)設(shè)直線l與圓M交于A、B兩點(diǎn),求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,且2acosB=3b﹣2bcosA.

(1)求 的值;
(2)設(shè)AB的中垂線交BC于D,若cos∠ADC= ,b=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將7名應(yīng)屆師范大學(xué)畢業(yè)生分配到3所中學(xué)任教.

(1)4個(gè)人分到甲學(xué)校,2個(gè)人分到乙學(xué)校,1個(gè)人分到丙學(xué)校,有多少種不同的分配方案?

(2)一所學(xué)校去4個(gè)人,另一所學(xué)校去2個(gè)人,剩下的一個(gè)學(xué)校去1個(gè)人,有多少種不同的分配方案?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面是直角梯形,∠ABC=∠BCD= ,AB=BC=1,CD=2,PA⊥平面ABCD,E是PD的中點(diǎn).

(1)求證:AE∥平面PBC;
(2)若直線AE與直線BC所成角等于 ,求二面角D﹣PB﹣A平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(題文)已知函數(shù)),其中

(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

(2)若函數(shù)僅在處有極值,求的取值范圍;

(3)若對(duì)于任意的,不等式上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于莖葉圖的說(shuō)法,結(jié)論錯(cuò)誤的一個(gè)是( )

A. 甲的極差是29 B. 甲的中位數(shù)是25

C. 乙的眾數(shù)是21 D. 甲的平均數(shù)比乙的大

查看答案和解析>>

同步練習(xí)冊(cè)答案