已知點A在球O的表面上,過點A的作平面α,使OA與平面α成30°角,若平面α截球所得的圓面積為3π,則球O的體積為( 。
A、
3
B、4π
C、
32π
3
D、16π
考點:球的體積和表面積
專題:計算題,空間位置關(guān)系與距離
分析:求出圓的半徑,可得球O的半徑,即可求出球O的體積.
解答: 解:∵平面α截球所得的圓面積為3π,
∴圓的半徑為
3
,
∵OA與平面α成30°角,
∴球O的半徑為2,
∴球O的體積為
4
3
π•23
=
32π
3
,
故選:C.
點評:本題考查球O的體積,考查學生的計算能力,比較基礎(chǔ).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy中,曲線C1的參數(shù)方程是
x=t-
1
t
y=t+
1
t
,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C2的極坐標方程是ρsin(θ+
π
6
)=1,則兩曲線交點間的距離是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=-x2+6x-1在區(qū)間(a,1+2a)上不是單調(diào)函數(shù),則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若拋物線的頂點在原點,焦點與雙曲線
y2
4
-
x2
5
=1的一個焦點重合,則該拋物線的標準方程可能是( 。
A、x2=4y
B、y2=4x
C、x2=-12y
D、y2=-12x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于數(shù)列{un},若存在常數(shù)M>0對任意n∈N*恒有:|un+1-un|+|un-un-1|+…+|u2-u1|≤M,則稱{un}是B-數(shù)列.
(1)首項為1,公比為-
1
2
的等比數(shù)列是否是B-數(shù)列?請說明理由.
(2)若數(shù)列{an}是B-數(shù)列,
①證明:{an2}也是B-數(shù)列;
②令A(yù)n=
a1+a2+…+an
n
,求證:數(shù)列{An}是B-數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于任意非零實數(shù)a,b,已知y=f(x),x∈(-∞,0)∪(0,+∞),滿足f(ab)=f(a)+f(b)
(1)求f(1)與f(-1)的值;
(2)證明y=f(x)是偶函數(shù);
(3)當x>1時f(x)>0,若f(2)=1,求f(x)在區(qū)間[8,32]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C與x軸相切,圓心C在射線3x-y=0(x>0)上,直線x-y=0被圓C截得的弦長為2
7

(1)求圓C標準方程;
(2)若點Q在直線l1:x+y+1=0上,經(jīng)過點Q直線l2與圓C相切于p點,求|QP|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(
1
3
x-log2x,若實數(shù)x0是方程f(x)=0的解,且0<x1<x0,則f(x1)( 。
A、恒為負值B、等于0
C、恒為正值D、不大于0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“a=0是f(x)=
x+a
|x|-1
為奇函數(shù)“的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習冊答案