已知p>0,q>0,且2p+q=8,則pq的最大值為( 。
A、8
B、
64
9
C、7
D、
49
9
考點:基本不等式
專題:不等式的解法及應(yīng)用
分析:利用基本不等式的性質(zhì)即可得出.
解答: 解:∵p>0,q>0,且2p+q=8,
∴8≥2
2pq
,化為pq≤8,當(dāng)且僅當(dāng)q=2p=4時取等號.
則pq的最大值為8.
故選:A.
點評:本題考查了基本不等式的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線x2-2y2=4的虛軸長是( 。
A、2
B、
2
C、4
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|2<x<8},B={x|x≥6},求A∩B,A∪B,(∁uA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于平面向量
a
、
b
、
c
,有下列三個命題:
①若
a
b
=
a
c
,則
b
=
c

②若
a
=(1,k),
b
=(-2,6),
a
b
,則k=-3
③非零向量
a
b
滿足|
a
|=|
b
|=|
a
-
b
|,則
a
a
+
b
的夾角為60°.
④若
a
=(λ,-2),
b
=(-3,5),且
a
b
的夾角是鈍角,則λ的取值范圍是λ∈(-
10
3
,+∞)
其中正確命題的序號為
 
.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的頂點C(4,3),AC邊上的中線BM所在直線方程為2x-y-4=0,BC邊上的高AH所在直線方程為3x+5y-11=0,求頂點A,B的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lg(1-
a
2x
)
的定義域是(
1
2
,+∞)
,則實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=
3+i
-i
(i
為虛數(shù)單位)的虛部為(  )
A、1B、-1C、3D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

袋中有3個白球,2個紅球和若干個黑球(球的大小均相同)從中任取2個球,設(shè)每取得一個黑球得0分,每取得一個白球得1分,每取得一個紅球得2分,已知得0分的概率為
1
6
,
(1)求得分至少有2分的概率
(2)設(shè)所得分數(shù)為X,求E(X)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=a2-x(a>0且a≠1)的圖象過定點A,若點A的坐標滿足方程mx+ny=1(m,n>0),則
1
m
+
1
n
的最小值為
 

查看答案和解析>>

同步練習(xí)冊答案