【題目】某大學在一次公益活動中聘用了10名志愿者,他們分別來自于A、B、C三個不同的專業(yè),其中A專業(yè)2人,B專業(yè)3人,C專業(yè)5人,現(xiàn)從這10人中任意選取3人參加一個訪談節(jié)目.
(1)求3個人來自兩個不同專業(yè)的概率;
(2)設X表示取到B專業(yè)的人數(shù),求X的分布列與數(shù)學期望.
科目:高中數(shù)學 來源: 題型:
【題目】以直角坐標系的原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρsin2α﹣4cosα=0.已知直線l的參數(shù)方程為(為參數(shù)),點M的直角坐標為.
(1)求直線l和曲線C的普通方程;
(2)設直線l與曲線C交于A,B兩點,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的焦距為8,其短軸的兩個端點與長軸的一個端點構成正三角形。
(1)求的方程;
(2)設為的左焦點,為直線上任意一點,過點作的垂線交于兩點,.
(i)證明:平分線段(其中為坐標原點);
(ii)當取最小值時,求點的坐標。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的四個頂點圍成的四邊形的面積為,其離心率為
(1)求橢圓的方程;
(2)過橢圓的右焦點作直線(軸除外)與橢圓交于不同的兩點,,在軸上是否存在定點,使為定值?若存在,求出定點坐標及定值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形與均為菱形,,且.
(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)若為線段上的一點,且滿足直線與平面所成角的正弦值為,求線段的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖象關于原點對稱,其中為常數(shù).
(1)求的值;
(2)當時, 恒成立,求實數(shù)的取值范圍;
(3)若關于的方程在上有解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在甲、乙兩個班級進行數(shù)學考試,按照大于等于120分為優(yōu)秀,120分以下為非優(yōu)秀統(tǒng)計成績后,得到如下的2×2列聯(lián)表.已知在全部105人中抽到隨機抽取1人為優(yōu)秀的概率為.
優(yōu)秀 | 非優(yōu)秀 | 總計 | |
甲班 | 10 | ||
乙班 | 30 | ||
合計 |
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按95%的可能性要求,能否認為“成績與班級有關系”?
P(K2≥x0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
x0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式及數(shù)據(jù):K2=.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某車間租賃甲、乙兩種設備生產(chǎn)A,B兩類產(chǎn)品,甲種設備每天能生產(chǎn)A類產(chǎn)品8件和B類產(chǎn)品15件,乙種設備每天能生產(chǎn)A類產(chǎn)品10件和B類產(chǎn)品25件,已知設備甲每天的租賃費300元,設備乙每天的租賃費400元,現(xiàn)車間至少要生產(chǎn)A類產(chǎn)品100件,B類產(chǎn)品200件,所需租賃費最少為__元
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為節(jié)能環(huán)保,推進新能源汽車推廣和應用,對購買純電動汽車的用戶進行財政補貼,財政補貼由地方財政補貼和國家財政補貼兩部分組成. 某地補貼政策如下(表示純電續(xù)航里程):
有三個純電動汽車店分別銷售不同品牌的純電動汽車,在一個月內它們的銷售情況如下:
(每位客戶只能購買一輛純電動汽車)
(1)從上述購買純電動汽車的客戶中隨機選一人,求此人購買的是店純電動汽車且享受補貼不低于3.5萬元的概率;
(2)從上述兩個純電動汽車店的客戶中各隨機選一人,求恰有一人享受5萬元財政補貼的概率;
(3)從上述三個純電動汽車店的客戶中各隨機選一人, 這3個人享受的財政補貼分別記為. 求隨機變量的分布列. 試比較數(shù)學期望的大小;比較方差 的大小. (只需寫出結論)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com