【題目】請解答以下問題,要求解決兩個問題的方法不同.
(1)如圖1,要在一個半徑為1米的半圓形鐵板中截取一塊面積最大的矩形,如何截?并求出這個最大矩形的面積.
(2)如圖2,要在一個長半軸為2米,短半軸為1米的半個橢圓鐵板中截取一塊面積最大的矩形,如何截?并求出這個最大矩形的面積.
【答案】(1),面積最大為1(2),,面積最大值為2
【解析】
(1)通過設(shè)出∠BOC=α,進而用α表示出OB,BC;最后表示出S利用三角函數(shù)即可求解;
(2)通過設(shè)出點C的坐標(m,n),進而表示出OB=m,BC=n,S=2mn;再利用點C為橢圓上的點,即滿足其方程利用基本不等式求解即可;
(1)設(shè)∠BOC=α,();
∴OB=cosα,BC=sinα;
∵S=2OBBC,
∴S═2sinαcosα=sin2α;
∴當時,即OA時,矩形面積最大為1;
(2)依題意可得:橢圓方程為:;
設(shè):點C坐標為(m,n)即:OB=m,BC=n;
∴S=2OBBC=2mn;
∵點C為橢圓上的點;
∴;
∵;
∴mn≤1,當且僅當時取等號;
∴S≤2;即矩形面積最大為2;當OB,即時取等號;
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四面體中,,平面平面,,且.
(1)證明:平面;
(2)設(shè)為棱的中點,當四面體的體積取得最大值時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),().
(1)若,求在上的最小值;
(2)若對于任意的實數(shù)恒成立,求的取值范圍;
(3)當時,求函數(shù)在上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論中正確的個數(shù)是( ).
①在中,若,則是等腰三角形;
②在中,若 ,則
③兩個向量,共線的充要條件是存在實數(shù),使
④等差數(shù)列的前項和公式是常數(shù)項為0的二次函數(shù).
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一隧道內(nèi)設(shè)雙行線公路,其截面由一個長方形和拋物線構(gòu)成.為保證安全,要求行使車輛頂部(設(shè)為平頂)與隧道頂部在豎直方向上的高度之差至少要有0.5米.若行車道總寬度AB為6米,則車輛通過隧道的限制高度是______米(精確到0.1米)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,已知asinB=bsin2A.
(1)求角A;
(2)若a=5,△ABC的面積為,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某部門共有4名員工, 某次活動期間, 周六、 周日的上午、 下午各需要安排一名員工值班,若規(guī)定同一天的兩個值班崗位不能安排給同一名員工, 則該活動值班崗位的不同安排方式共有( )
A.120種B.132種C.144種D.156種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】閱讀如圖判斷閏年的流程圖,判斷公元1900年、公元2000年、公元2018年、公元2020年這四年中閏年的個數(shù)為(nMODm為n除以m的余數(shù))( )
A.1個B.2個
C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在上的函數(shù),滿足.
(1)證明:2是函數(shù)的周期;
(2)當時,,求在時的解析式,并寫出在()時的解析式;
(3)對于(2)中的函數(shù),若關(guān)于x的方程恰好有20個解,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com