過點E(-
p
2
,0)的直線與拋物線y2=2px(p>0)交于A、B兩點,F(xiàn)是拋物線的焦點,若A為線段EB的中點,且|AF|=3,則p=( 。
A、1B、2C、3D、4
考點:拋物線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:設A(x1,y1),B(x2,y2),則x1+
p
2
=3,x2+
p
2
=6,2y1=y2,利用拋物線方程,可得4x1=x2,
3
2
p
=6,即可求出p的值.
解答: 解:設A(x1,y1),B(x2,y2),則x1+
p
2
=3,x2+
p
2
=6,2y1=y2,
∴4y12=y22
∴4×2px1=2px2,
∴4x1=x2
3
2
p
=6,
∴p=4.
故選:D.
點評:本題考查拋物線的性質(zhì),考查學生的計算能力,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

拋擲一枚骰子,觀察出現(xiàn)的點數(shù),若已知出現(xiàn)的點數(shù)不超過4,則出現(xiàn)的點數(shù)是奇數(shù)的概率為( 。
A、
1
3
B、
1
4
C、
1
6
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點O為△ABC所在平面內(nèi)一點,且
OA
2+
BC
2=
OB
2+
CA
2,那么點O的軌跡一定過△ABC的(  )
A、重心B、垂心C、內(nèi)心D、外心

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若集合A⊆X,X為全集,則稱函數(shù)fA(x)=
1,x∈A
0,x∉A
為A的特征函數(shù).記CxA=
.
A
那么,對A,B⊆X,下列命題不正確的是( 。
A、A⊆B⇒fA(x)≤fB(x),?x∈X
B、f
.
A
(x)=1-fA(x),?x∈X
C、fA∩B(x)=fA(x)fB(x),?x∈X
D、fA∪B(x)=fA(x)+fB(x),?x∈X

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|y=log2(x-1)},B={y|y=2x+2},則A∩B=( 。
A、(2,+∞)B、(1,+∞)
C、[2,+∞)D、R

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=alnx+
2(1-x)
1+x
(a∈R)定義域為(0,1),則f(x)的圖象不可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的偶函數(shù)f(x)滿足f(x+1)=-f(x),且f(x)在[-3,-2]上是減函數(shù),α,β是銳角三角形的兩個內(nèi)角,則f(sinα)與f(cosβ)的大小關系是( 。
A、f(sinα)>f(cosβ)
B、f(sinα)<f(cosβ)
C、f(sinα)=f(cosβ)
D、f(sinα)與f(cosβ)的大小關系不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1,在直角梯形ABCD中,AD∥BC,頂點D,C分別在AM,BN上運動(點D不與A重合,點C不與B重合),E是AB上的動點(點E不與A,B重合),在運動過程中始終保持DE⊥CE,且AD+DE=AB=a.
(1)求證:△ADE∽△BEC;
(2)設AE=m,請?zhí)骄浚骸鰾EC的周長是否與m值有關,若有關請用含m的代數(shù)式表示△BEC的周長;若無關請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x∈R,a∈R且a≠0,向量
OA
=(acos2x,1),
OB
=(2,
3
asin2x-a),f(x)=
OA
OB

(Ⅰ)求函數(shù)f(x)的解析式,并求當a>0時,f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當x∈[0,
π
2
]時,f(x)的最大值為5,求a的值.
(Ⅲ)當a=1時,若不等式|f(x)-m|<2在x∈[0,
π
2
]上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案