如圖,用與底面成角的平面截圓柱得一橢圓截線,則該橢圓的離心率為 (    )
A.B.C.D.非上述結(jié)論

試題分析:∵設圓柱的底面直徑為d,截面與底面成30°,∴橢圓的短軸長d,
橢圓的長軸長2a= 。
根據(jù)得,橢圓的半焦距長= d
則橢圓的離心率e=,故選A.
點評:簡單題,一般的,若與底面夾角為θ平面α截底面直徑為d圓柱,則得到的截面必要橢圓,且橢圓的短軸長等于圓柱的底面直徑,長軸長等于
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:=1(a>b>0)的離心率為,短軸一個端點到右焦點的距離為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設直線l與橢圓C交于A、B兩點,坐標原點O到直線l的距離為,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)設圓C:,此圓與拋物線有四個不同的交點,若在軸上方的兩交點分別為,坐標原點為的面積為。
(1)求實數(shù)的取值范圍;
(2)求關(guān)于的函數(shù)的表達式及的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若拋物線上一點到準線的距離等于它到頂點的距離,則點的坐標為____

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線與雙曲線有相同的焦點,點是兩曲線的交點,且軸,則雙曲線的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若雙曲線的右焦點與拋物線=12x的焦點重合,則m=______________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線的左右焦點分別為為雙曲線的離心率,P是雙曲線右支上的點,的內(nèi)切圓的圓心為I,過作直線PI的垂線,垂足為B,則OB=
A.a(chǎn)B.bC.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在直角坐標系中,點,點為拋物線的焦點,
線段恰被拋物線平分.
(Ⅰ)求的值;
(Ⅱ)過點作直線交拋物線兩點,設直線、的斜率分別為、、,問能否成公差不為零的等差數(shù)列?若能,求直線的方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)是偶函數(shù),則函數(shù)的圖象與y軸交點的縱坐標的最大值為:(   )
A.-4B.2C.3D.4

查看答案和解析>>

同步練習冊答案