【題目】如圖,已知橢圓的左、右焦點(diǎn)分別為、,,軸的正半軸上一點(diǎn),交橢圓于,且,的內(nèi)切圓半徑為1.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若點(diǎn)為圓上一點(diǎn),求的取值范圍.

【答案】12

【解析】

1)設(shè)內(nèi)切圓與三角形各邊的切點(diǎn),再由直角三角形中,由勾股定理可得橢圓的值,再由可得的值,由,,之間的關(guān)系求出橢圓的方程;

2)由(1)得直線的方程,由圓心到直線的距離為半徑1,求出圓的圓心坐標(biāo),可得圓的方程,設(shè)的參數(shù)坐標(biāo),可得數(shù)量積的表達(dá)式,進(jìn)而求出其取值范圍.

解:(1)設(shè)的內(nèi)切圓,,,連接,,

因?yàn)?/span>,因?yàn)?/span>,所以四邊形為正方形,所以

設(shè),,由,且,有,則,

,有,

,即,

所以橢圓的方程的標(biāo)準(zhǔn)方程:;

2)設(shè)點(diǎn),其到直線的距離為1

,解得(舍),即.

故圓的方程為,

設(shè),

,

所以

因?yàn)?/span>

所以

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】干支歷法是上古文明的產(chǎn)物,又稱節(jié)氣歷或中國陽歷,是一部深?yuàn)W的歷法.它是用60組各不相同的天干地支標(biāo)記年月日時(shí)的歷法.具體的算法如下:先用年份的尾數(shù)查出天干,如20133為癸;再用2013年除以12余數(shù)為9,9為巳.那么2013年就是癸巳年了,

天干

4

5

6

7

8

9

0

1

2

3

地支

4

5

6

7

8

9

10

11

12

1

2

3

2020年高三應(yīng)屆畢業(yè)生李東是壬午年出生,李東的父親比他大25歲.問李東的父親是哪一年出生(

A.甲子B.乙丑C.丁巳D.丙卯

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,DABC中,邊BC的中點(diǎn),KACABD的外接圓O的交點(diǎn),EK平行于AB且與圓O交于E,若AD=DE,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

1)討論時(shí),的單調(diào)性、極值;

2)求證:在(1)的條件下,

3)是否存在實(shí)數(shù)a,使的最小值是3,如果存在,求出a的值;若不存在,

請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,BC所對邊分別為a,b,c.,c6,則△ABC外接圓的半徑大小是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次比賽中,某隊(duì)的六名隊(duì)員均獲得獎(jiǎng)牌,共獲得4枚金牌2枚銀牌,在頒獎(jiǎng)晚會(huì)上,這六名隊(duì)員與1名領(lǐng)隊(duì)排成一排合影,若兩名銀牌獲得者需站在領(lǐng)隊(duì)的同側(cè),則不同的排法共有______種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F(0,1)為平面上一點(diǎn),H為直線ly=1上任意一點(diǎn),過點(diǎn)H作直線l的垂線m,設(shè)線段FH的中垂線與直線m交于點(diǎn)P,記點(diǎn)P的軌跡為Γ.

1)求軌跡Γ的方程;

2)過點(diǎn)F作互相垂直的直線ABCD,其中直線AB與軌跡Γ交于點(diǎn)AB,直線CD與軌跡Γ交于點(diǎn)CD,設(shè)點(diǎn)M,N分別是ABCD的中點(diǎn).

①問直線MN是否恒過定點(diǎn),如果經(jīng)過定點(diǎn),求出該定點(diǎn),否則說明理由;

②求△FMN的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱中,底面是等腰梯形,,頂點(diǎn)在底面內(nèi)的射影恰為點(diǎn)

1)求證:平面

2)若直線與底面所成的角為,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體ABCDE中,平面ABC,,F是線段AD的中點(diǎn),.

1)求證:;

2)若,求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊答案