【題目】設(shè)正數(shù)滿足會(huì)且使得關(guān)于的不等式總有實(shí)數(shù)解.試求的取值范圍.

【答案】

【解析】

首先,求出、應(yīng)滿足的條件.由原不等式得下列的各個(gè)等價(jià)形式:,兩邊同時(shí)平方并整理得.

,則,代入式①得

,

.

下面分3種情形討論:

當(dāng)時(shí),式②變?yōu)?/span>,有解.

當(dāng),充分大時(shí),式②有解.

當(dāng)時(shí),首先要求判別式,有,

.

.

由于,所以,方程有兩個(gè)實(shí)根、.因?yàn)?/span>,所以,必有.又因?yàn)閽佄锞開口向上,所以,不等式時(shí)總是有解.

綜合上述得,、應(yīng)滿足的充分必要條件是,

.

注意到式⑤與三角恒等式相似性,

故令,.

,

其中,.

,則.

當(dāng)時(shí),由式⑥得,.

當(dāng)時(shí),由式⑥解得 .

,則,

它等價(jià)于

矛盾.

故這種情形不可能存在.從而,只有一種可能,

.

于是,.

這時(shí)有兩種可能:

(1)

或(2)

由(1)可解得,由(2)可解得.

綜上可知,的取值范圍是.

,所以,的取值范圍是,即能取遍中的每一個(gè)值(是相互獨(dú)立的).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型企業(yè)人力資源部為了研究企業(yè)員工工作積極性和對(duì)待企業(yè)改革態(tài)度的關(guān)系,隨機(jī)抽取了名員工進(jìn)行問卷調(diào)查,其中的員工工作積極.經(jīng)匯總調(diào)查,這名員工是否支持企業(yè)改革的調(diào)查得分(百分制)如莖葉圖(圖)所示.調(diào)查評(píng)價(jià)標(biāo)準(zhǔn)指出:調(diào)查得分不低于分者為積極支持企業(yè)改革,調(diào)查得分低于70分者不太贊成企業(yè)改革.

1)根據(jù)以上資料完成下面的列聯(lián)表,結(jié)合數(shù)據(jù)能否有的把握認(rèn)為員工的工作積極性與是否積極支持企業(yè)改革是有關(guān)的,并回答人力資源部的研究項(xiàng)目.

積極支持企業(yè)改革

不太贊成企業(yè)改革

總計(jì)

工作積極

工作一般

總計(jì)

2)現(xiàn)將名員工的調(diào)查得分分為如下組:,,,其頻率分布直方圖如圖所示,這名員工的調(diào)查數(shù)據(jù)得分的平均值可由莖葉圖得到,記為,由頻率分布直方圖得到的估計(jì)值記為(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表),的誤差值在以內(nèi),可以由代替,能否由代替?(提示:名員工的調(diào)查數(shù)據(jù)得分的和

3)該企業(yè)人力資源部從分以上的員工中任選名員工進(jìn)行座談,則所選員工的分?jǐn)?shù)超過分的人數(shù)的數(shù)學(xué)期望是多少?

附:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】多選題)對(duì)某兩名高三學(xué)生在連續(xù)9次數(shù)學(xué)測試中的成績(單位:分)進(jìn)行統(tǒng)計(jì)得到如下折線圖,下面是關(guān)于這兩位同學(xué)的數(shù)學(xué)成績分析.其中正確的選項(xiàng)有(

A.甲同學(xué)的成績折線圖具有較好的對(duì)稱性,故平均成績?yōu)?/span>130分;

B.根據(jù)甲同學(xué)成績折線圖提供的數(shù)據(jù)進(jìn)行統(tǒng)計(jì),估計(jì)該同學(xué)平均成績?cè)趨^(qū)間內(nèi);

C.乙同學(xué)的數(shù)學(xué)成績與測試次號(hào)具有比較明顯的線性相關(guān)性,且為正相關(guān);

D.乙同學(xué)連續(xù)九次測驗(yàn)成績每一次均有明顯進(jìn)步.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校高三年級(jí)學(xué)生某次身體素質(zhì)體能測試的原始成績采用百分制,已知所有這些學(xué)生的原始成績均分布在內(nèi),發(fā)布成績使用等級(jí)制,各等級(jí)劃分標(biāo)準(zhǔn)見下表.

百分制

85分及以上

70分到84分

60分到69分

60分以下

等級(jí)

A

B

C

D

規(guī)定:A,B,C三級(jí)為合格等級(jí),D為不合格等級(jí)為了解該校高三年級(jí)學(xué)生身體素質(zhì)情況,從中抽取了n名學(xué)生的原始成績作為樣本進(jìn)行統(tǒng)計(jì).

按照,,的分組作出頻率分布直方圖如圖1所示,樣本中分?jǐn)?shù)在80分及以上的所有數(shù)據(jù)的莖葉圖如圖2所示

n和頻率分布直方圖中的x,y的值,并估計(jì)該校高一年級(jí)學(xué)生成績是合格等級(jí)的概率;

根據(jù)頻率分布直方圖,求成績的中位數(shù)精確到

在選取的樣本中,從AD兩個(gè)等級(jí)的學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行調(diào)研,求至少有一名學(xué)生是A等級(jí)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四個(gè)函數(shù),其中,的圖像如圖所示.

(1)請(qǐng)?jiān)谧鴺?biāo)系中畫出的圖像,并根據(jù)這四個(gè)函數(shù)的圖像總結(jié)出指數(shù)函數(shù)具有哪些性質(zhì)?

(2)舉出在實(shí)際情境中能夠抽象出指數(shù)函數(shù)的一個(gè)例子并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用年的隔熱層,每厘米厚的隔熱層建造成本為萬元.該建筑物每年的能源消耗費(fèi)用(單位:萬元)與隔熱層厚度(單位:厘米)滿足關(guān)系:.若不建隔熱層,每年的能源消耗費(fèi)用為萬元.設(shè)為隔熱層建造費(fèi)用與年的能源消耗費(fèi)用之和.

1)求的值及的表達(dá)式;

2)隔熱層修建多厚時(shí),總費(fèi)用最小,并求其最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù).

1)若的定義域和值域均是,求實(shí)數(shù)的值;

2)若在區(qū)間上是減函數(shù),求在區(qū)間上的最小值和最大值;

3)若在區(qū)間上有零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)圖象相鄰兩條對(duì)稱軸的距離為,將函數(shù)的圖象向左平移個(gè)單位后,得到的圖象關(guān)于y軸對(duì)稱則函數(shù)的圖象( )

A. 關(guān)于直線對(duì)稱 B. 關(guān)于直線對(duì)稱

C. 關(guān)于點(diǎn)對(duì)稱 D. 關(guān)于點(diǎn)對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,滿足,數(shù)列的前項(xiàng)為,滿足

(Ⅰ)設(shè),求證:數(shù)列為等比數(shù)列;

(Ⅱ)求的通項(xiàng)公式;

(Ⅲ)若對(duì)任意的恒成立,求實(shí)數(shù)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案