求證:f(x)=x2-2x在x∈(-∞,0)上為減函數(shù).
考點(diǎn):函數(shù)單調(diào)性的判斷與證明,二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用函數(shù)的單調(diào)性的定義證明即可.
解答: 證明:設(shè)任意的x1,x2∈(-∞,0),且x1<x2,則
f(x1)-f(x2)=(x12-2x1)-(x22-2x2
=(x1-x2)(x1+x2-2),
∵x1,x2∈(-∞,0),且x1<x2
∴x1-x2<0,x1+x2-2<0,
∴f(x1)-f(x2)>0,
即f(x1)>f(x2),
∴函數(shù)f(x)=x2-2x在(-∞,0)上是減函數(shù).
點(diǎn)評(píng):本題主要考查函數(shù)單調(diào)性的判斷,由增函數(shù)的定義證明即可,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2x+
8
x
的單調(diào)遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中畫出表示集合{a|k•180°-90°≤a≤k•180°+45°,k∈Z}的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)An(n,an)(x∈N*)都在函數(shù)y=ax(a>0且a≠1)的圖象上,則( 。
A、a2+a8>2a5
B、a2+a8<2a5
C、a2+a8=2a5
D、a2+a8與2a5的大小與a有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

6a-2
-(a-4)0有意義,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y滿足
x-y+1≥0
x+y-5≤0
u=
2x+y-1
x-2
,求u的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=kx2+4x-2在[1,2]上為增函數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡(jiǎn):
1+sina
1-sina
-
1-sina
1+sina

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線ρcosθ-ρsinθ+a=0與圓
x=-1+3cosθ
y=2+3sinθ
(θ為參數(shù))有公共點(diǎn),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案