已知平面向量
OA
OB
的夾角θ∈[60°,120°],且|
OA
|=|
OB
|=3
,
OP
=
1
3
OA
+
2
3
OB
,則
|OP|
的取值范圍是
[
3
,
7
]
[
3
7
]
分析:根據(jù)向量
OA
OB
的模長(zhǎng)和夾角的范圍,結(jié)合數(shù)量積公式得
OA
OB
的取值范圍.再將向量
OP
平方,由數(shù)量積
OA
OB
的取值范圍得
OP
2的范圍,最后開方即可得到,
|OP|
的取值范圍.
解答:解:∵
OA
OB
=
|OA|
|OB|
cosθ
=9cosθ,cosθ∈[cos120°,cos60°],
OA
OB
的取值范圍是[-
9
2
,
9
2
]
OP
=
1
3
OA
+
2
3
OB
,
|OP|
2
=(
1
3
OA
+
2
3
OB
)2=
1
9
OA
2
+
4
9
OA
OB
+
4
9
OB
2
=1+
4
9
OA
OB
+4=5+
4
9
OA
OB

OA
OB
∈[-
9
2
,
9
2
],
∴當(dāng)
OA
OB
=-
9
2
時(shí),
|OP|
2
有最小值3;當(dāng)
OA
OB
=
9
2
時(shí),
|OP|
2
有最大值7
因此,
|OP|
的最小值是
3
,最大值為
7

故答案為:[
3
,
7
]
點(diǎn)評(píng):本題給出兩個(gè)向量的長(zhǎng)度和夾角的范圍,求它們的一個(gè)線性組合的長(zhǎng)度取值范圍,考查了平面向量數(shù)量積、模與夾角的公式等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),A(-3,4),B(6,-2).C(4,6),D在AB上,且2AD=BD
(1)求
AB
的坐標(biāo)及|
1
2
BC
|

(2)若
OE
=
OA
+
OB
,  
OF
=
OA
-
OB
,求
OE
OF

(3)求向量
DB
DC
夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,正確的是
①②③
①②③

①平面向量
a
b
的夾角為60°,
a
=(2,0),|
b
|=1,則|
a
+
b
|=
7
;
②已知
a
=(sinθ,
1+cosθ
),
b
=(1,
1-cosθ
)其中θ∈(π,
2
)則
a
b
;
③O是△ABC所在平面上一定點(diǎn),動(dòng)點(diǎn)P滿足:
OP
=
OA
+λ(
AB
sinC
+
AC
sinB
),λ∈(0,+∞),則直線AP一定通過△ABC的內(nèi)心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面內(nèi)一動(dòng)點(diǎn)P到定點(diǎn)F(2,0)的距離與點(diǎn)P到y(tǒng)軸的距離的差等于2.
(Ⅰ)求動(dòng)點(diǎn)P的軌跡C的方程;
(Ⅱ)過點(diǎn)F作傾斜角為60°的直線l與軌跡C交于A(x1,y1),B(x2,y2)(x1<x2)兩點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)M為軌跡C上一點(diǎn),若向量
OM
=
OA
OB
,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
OA
=(1,4)
,
OB
=(-1,6)
,向量
OP
=
OA
+2(1-λ) 
OB
,λ∈R,O為坐標(biāo)原點(diǎn),
(1)求當(dāng)
OP
AB
時(shí),
OP
的坐標(biāo);
(2)當(dāng)|
OP
|取最小值時(shí),求
OP
AB
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知對(duì)任意平面向量
AB
=(x,y)
,將
AB
繞其起點(diǎn)沿順時(shí)針方向旋轉(zhuǎn)θ角得到向量
AP
=(xcosθ+ysinθ,-xsinθ+ycosθ)
,叫做將點(diǎn)B繞點(diǎn)A沿順時(shí)針方向旋轉(zhuǎn)θ角得到點(diǎn)P.
(1)已知平面內(nèi)點(diǎn)A(1,2),點(diǎn)B(1+
2
,2-2
2
)
,將點(diǎn)B繞點(diǎn)A沿順時(shí)針方向旋轉(zhuǎn)
π
4
得到點(diǎn)P,求點(diǎn)P的坐標(biāo);
(2)設(shè)平面內(nèi)曲線3x2+3y2+2xy=4上的每一點(diǎn)繞坐標(biāo)原點(diǎn)O沿順時(shí)針方向旋轉(zhuǎn)
π
4
得到的點(diǎn)的軌跡是曲線C,求曲線C的方程;
(3)過(2)中曲線C的焦點(diǎn)的直線l與曲線C交于不同的兩點(diǎn)A、B,當(dāng)
OA
OB
=0
時(shí),求△AOB的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案