【題目】某地方政府準備在一塊面積足夠大的荒地上建一如圖所示的一個矩形綜合性休閑廣場,其總面積為3000平方米,其中場地四周(陰影部分)為通道,通道寬度均為2米,中間的三個矩形區(qū)域將鋪設塑膠地面作為運動場地(其中兩個小場地形狀相同),塑膠運動場地占地面積為S平方米.
(1)分別寫出用x表示y和S的函數(shù)關系式(寫出函數(shù)定義域);
(2)怎樣設計能使S取得最大值,最大值為多少?
【答案】
(1)解:由已知xy=3000,2a+6=y,
則y= ,(其中6≤x≤500);
所以,運動場占地面積為S=(x﹣4)a+(x﹣6)a=(2x﹣10)a
=(2x﹣10) =(x﹣5)(y﹣6)
=3030﹣6x﹣ ,(其中6≤x≤500)
(2)解:占地面積S=3030﹣6x﹣ =3030﹣(6x+ )≤3030﹣2
=3030﹣2×300=2430;
當且僅當6x= ,即x=50時,“=”成立,此時x=50,y=60,Smax=2430.
即設計x=50米,y=60米時,運動場地面積最大,最大值為2430平方米
【解析】(1)總面積為xy=3000,且2a+6=y,則y= ,(其中6≤x≤500);所以,運動場占地面積為S=(x﹣4)a+(x﹣6)a,整理即得;(2)由(1)知,占地面積S=3030﹣6x﹣ =3030﹣(6x+ ),由基本不等式可得函數(shù)的最大值,以及對應的x的值.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=loga(x+1),g(x)=loga(1﹣x)其中(a>0且a≠1).
(1)判斷f(x)﹣g(x)的奇偶性,并說明理由;
(2)求使f(x)﹣g(x)>0成立的x的集合.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓經過、,圓心在直線上,過點,且斜率為的直線交圓相交于、兩點.
(Ⅰ)求圓的方程;
(Ⅱ)(i)請問是否為定值.若是,請求出該定值,若不是,請說明理由;
(ii)若為坐標原點,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱臺中,底面為平行四邊形, 為上的點.且.
(1)求證: ;
(2)若為的中點, 為棱上的點,且與平面所成角的正弦值為,試求的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直角坐標系中,曲線與軸負半軸交于點,直線與相切于, 為上任意一點, 為在上的射影, 為的中點.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)軌跡與軸交于,點為曲線上的點,且, ,試探究三角形的面積是否為定值,若為定值,求出該值;若非定值,求其取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知 , 的夾角為120°,| |=2,| |=3,記| =3 ﹣2 , =2 +k .
(1)若 ⊥ ,求實數(shù)k的值.
(2)是否存在實數(shù)k,使得 ∥ ?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】共享單車入住泉州一周年以來,因其“綠色出行,低碳環(huán)保”的理念而備受人們的喜愛,值此周年之際,某機構為了了解共享單車使用者的年齡段,使用頻率、滿意度等三個方面的信息,在全市范圍內發(fā)放份調查問卷,回收到有效問卷份,現(xiàn)從中隨機抽取份,分別對使用者的年齡段、~歲使用者的使用頻率、~歲使用者的滿意度進行匯總,得到如下三個表格:
(Ⅰ)依據(jù)上述表格完成下列三個統(tǒng)計圖形:
(Ⅱ)某城區(qū)現(xiàn)有常住人口萬,請用樣本估計總體的思想,試估計年齡在歲~歲之間,每月使用共享單車在~次的人數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ) 部分圖象如圖所示.
(Ⅰ)求f(x)的最小正周期及解析式;
(Ⅱ)設g(x)=f(x)﹣cos2x,求函數(shù)g(x)在區(qū)間 上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知⊙O:x2+y2=1和點M(4,2).
(Ⅰ)過點M向⊙O引切線l,求直線l的方程;
(Ⅱ)求以點M為圓心,且被直線y=2x﹣1截得的弦長為4的⊙M的方程;
(Ⅲ)設P為(Ⅱ)中⊙M上任一點,過點P向⊙O引切線,切點為Q.試探究:平面內是否存在一定點R,使得 為定值?若存在,請舉出一例,并指出相應的定值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com