已知函數(shù)的最大值為,最小值為,
的值為            .

試題分析:因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240001104761565.png" style="vertical-align:middle;" />,而利用奇偶性定義可知,g(-x)=-g(x)是奇函數(shù),那么可知f(x)就是奇函數(shù)向上平移一個(gè)單位得到的,那么奇函數(shù)中最大值和最小值的和為零,向上平移一個(gè)單位后,那么利用對(duì)稱性可知,最大值和最小值關(guān)于(0,1)對(duì)稱,故M+m=2.答案為2.
點(diǎn)評(píng):解決該試題的關(guān)鍵是能很好的利用奇偶性的對(duì)稱性質(zhì),得到所求解函數(shù)關(guān)于(0,1)
中心對(duì)稱,那么結(jié)合對(duì)稱性得到結(jié)論。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

武漢市某地西瓜從2012年6月1日起開(kāi)始上市。通過(guò)市場(chǎng)調(diào)查,得到西瓜種植成本Q(單位:元/kg)與上市時(shí)間t(單位:天)的數(shù)據(jù)如下表:
時(shí)間t
50
110
250
種植成本Q
150
108
150
求:1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個(gè)函數(shù)描述西瓜種植成本Q與上市時(shí)間t的變化關(guān)系。
Q=at+b,       Q=,       Q=      a,       Q=a.
2)利用你選取的函數(shù),求西瓜種植成本最低時(shí)的上市天數(shù)及最低種植成本。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知有兩個(gè)集合A,B,A={x∣-2≤x≤2},B={y∣0≤y≤2}.給出下列四個(gè)圖形,其中能表示以集合A為定義域,以集合B為值域函數(shù)關(guān)系的是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列滿足:,則=(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分) 已知函數(shù)。
(1)求函數(shù)y=的零點(diǎn);
(2) 若y=的定義域?yàn)閇3,9], 求的最大值與最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)已知定義域?yàn)椋?,+∞)的函數(shù)f(x)滿足:
①x>1時(shí),f(x)<0,②f()=1,③對(duì)任意x,y( 0,+∞),
都有f(xy)= f(x)+ f(y),求不等式f(x)+ f(5-x)≥-2的解集。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題12分)已知).
(1)判斷函數(shù)的奇偶性,并證明;
(2)若,用單調(diào)性定義證明函數(shù)在區(qū)間上單調(diào)遞減;
(3)是否存在實(shí)數(shù),使得的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000043331482.png" style="vertical-align:middle;" />時(shí),值域?yàn)?br />,若存在,求出實(shí)數(shù)的取值范圍;若不存在,則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知,若實(shí)數(shù)是方程的解,且,則的值是(   )
A.恒為負(fù)B.等于零C.恒為正D.不小于零

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(理科題)(本小題12分)
某房產(chǎn)開(kāi)發(fā)商投資81萬(wàn)元建一座寫(xiě)字樓,第一年裝修費(fèi)為1萬(wàn)元,以后每年增加2萬(wàn)元,把寫(xiě)字樓出租,每年收入租金30萬(wàn)元。
(1)若扣除投資和各種裝修費(fèi),則從第幾年開(kāi)始獲取純利潤(rùn)?
(2)若干年后開(kāi)發(fā)商為了投資其他項(xiàng)目,有兩種處理方案①年平均利潤(rùn)最大時(shí)以46萬(wàn)元出售該樓;
②純利潤(rùn)總和最大時(shí),以10萬(wàn)元出售樓,問(wèn)選擇哪種方案盈利更多?

查看答案和解析>>

同步練習(xí)冊(cè)答案