【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,城市缺水問(wèn)題較為突出.某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃在本市試行居民生活用水定額管理,即確定一個(gè)合理的居民月用水量標(biāo)準(zhǔn)x(噸),用水量不超過(guò) x 的部分按平價(jià)收費(fèi),超出 x 的部分按議價(jià)收費(fèi).為了了解全市居民用水量的分布情況,通過(guò)抽樣,獲得了 100 位居民某年的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.

(Ⅰ)求直方圖中 a 的值;
(Ⅱ)若該市政府希望使 85%的居民每月的用水量不超過(guò)標(biāo)準(zhǔn) x(噸),估計(jì) x 的值,并說(shuō)明理由;
(Ⅲ)已知平價(jià)收費(fèi)標(biāo)準(zhǔn)為 4 元/噸,議價(jià)收費(fèi)標(biāo)準(zhǔn)為 8元/噸.當(dāng) x=3時(shí),估計(jì)該市居民的月平均水費(fèi).(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替)

【答案】解:(Ⅰ)由頻率分布直方圖,
得:(0.08+0.16+a+0.40+0.52+a+0.12+0.08+0.04)×0.5=1,
解得:a=0.30;
(Ⅱ)∵前6組的頻率之和是(0.08+0.16+0.30+0.40+0.52+0.30)×0.5=0.88>0.85,
而前5組的頻率之和為(0.08+0.16+0.30+0.40+0.52)×0.5=0.73<0.85,
∴2.5≤x<3,
由0.3×(x﹣2.5)=0.85﹣0.73,解得:x=2.9,
因此,估計(jì)月用水量標(biāo)準(zhǔn)為2.9噸時(shí),
85%的居民每月的用水量不超過(guò)標(biāo)準(zhǔn);
(Ⅲ)設(shè)居民月用水量為t噸,相應(yīng)的水費(fèi)為y元,
則y= ,即y=
由題設(shè)條件及月均用水量的頻率分布直方圖,
得居民每月的水費(fèi)數(shù)據(jù)分組與頻率分布表如下:

組號(hào)

1

2

3

4

5

6

7

8

9

分組

[0,2)

[2,4)

[4,6)

[6,8)

[8,10)

[10,12)

[12,16)

[16,20)

[20,24)

頻率

0.04

0.08

0.15

0.20

0.26

0.15

0.06

0.04

0.02

根據(jù)題意,該市民的月平均水費(fèi)估計(jì)為:
1×0.04+3×0.08+5×0.15+7×0.20+9×0.26+11×0.15+14×0.06+18×0.04+22×0.02=8.42(元).
【解析】(I)根據(jù)頻率和為1,列出方程求出a的值;(II)求出月均用水量小于2.5噸和小于3噸的百分比,計(jì)算出有85%的居民每月用水量不超過(guò)標(biāo)準(zhǔn)的值;(III)根據(jù)頻率分布直方圖,求出當(dāng) x=3時(shí),估計(jì)該市居民的月平均水費(fèi).
【考點(diǎn)精析】根據(jù)題目的已知條件,利用頻率分布直方圖的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過(guò)作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等腰△ABC中,底邊BC=2 ,| ﹣t |的最小值為 | |,則△ABC的面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列關(guān)于命題的說(shuō)法錯(cuò)誤的是(
A.命題“若x2﹣3x+2=0,則x=1”的逆否命題為“若x≠1,則x2﹣3x+2≠0”
B.“a=2”是“函數(shù)f(x)=logax在區(qū)間(0,+∞)上為增函數(shù)”的充分不必要條件
C.若命題P:n∈N,2n>1000,則﹣P:n∈N,2n≤1000
D.命題“x∈(﹣∞,0),2x<3x”是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c
(1)若a,b,c成等比數(shù)列, ,求 的值;
(2)若A,B,C成等差數(shù)列,且b=2,設(shè)A=α,△ABC的周長(zhǎng)為l,求l=f(α)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線 的兩條漸近線分別為l1 , l2 , 經(jīng)過(guò)右焦點(diǎn)F垂直于l1的直線分別交l1 , l2 于 A,B 兩點(diǎn).若| |,| |,| |成等差數(shù)列,且 反向,則該雙曲線的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有1 000根某品種的棉花纖維,從中隨機(jī)抽取50根,纖維長(zhǎng)度(單位:mm)的數(shù)據(jù)分組及各組的頻數(shù)見(jiàn)右上表,據(jù)此估計(jì)這1 000根中纖維長(zhǎng)度不小于37.5 mm的根數(shù)是

纖維長(zhǎng)度

頻數(shù)

[22.5,25.5)

3

[25.5,28.5)

8

[28.5,31.5)

9

[31.5,34.5)

11

[34.5,37.5)

10

[37.5,40.5)

5

[40.5,43.5]

4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】C.[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系 中,已知直線 (l為參數(shù))與曲線 為參數(shù))相交于 , 兩點(diǎn),求線段 的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓O1:(x﹣2)2+y2=16和圓O2:x2+y2=r2(0<r<2),動(dòng)圓M與圓O1、圓O2都相切,切圓圓心M的軌跡為兩個(gè)橢圓,這兩個(gè)橢圓的離心率分別為e1 , e2(e1>e2),則e1+2e2的最小值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái)我國(guó)電子商務(wù)行業(yè)迎來(lái)篷布發(fā)展的新機(jī)遇,2015年雙11期間,某購(gòu)物平臺(tái)的銷售業(yè)績(jī)高達(dá)918億人民幣.與此同時(shí),相關(guān)管理部門(mén)推出了針對(duì)電商的商品和服務(wù)的評(píng)價(jià)體系.現(xiàn)從評(píng)價(jià)系統(tǒng)中選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),對(duì)商品的好評(píng)率為0.6,對(duì)服務(wù)的好評(píng)率為0.75,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為80次.
(1)是否可以在犯錯(cuò)誤概率不超過(guò)0.1%的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)?
(2)若將頻率視為概率,某人在該購(gòu)物平臺(tái)上進(jìn)行的5次購(gòu)物中,設(shè)對(duì)商品和服務(wù)全好評(píng)的次數(shù)為隨機(jī)變量X: ①求對(duì)商品和服務(wù)全好評(píng)的次數(shù)X的分布列(概率用組合數(shù)算式表示);
②求X的數(shù)學(xué)期望和方差.

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中n=a+b+c+d)

查看答案和解析>>

同步練習(xí)冊(cè)答案